

University of Alberta

Development of an Experimental Apparatus for
Studying the Effects of Acoustic Excitation on Viscosity

by

Marc David Evans

A thesis submitted to the Faculty of Graduate Studies and Research
in partial fulfillment of the requirements for the degree of

Master of Science
in

Engineering Management

Department of Mechanical Engineering

©Marc David Evans
Fall 2012

Edmonton, Alberta

Permission is hereby granted to the University of Alberta Libraries to reproduce single copies of this thesis and to lend or
sell such copies for private, scholarly or scientific research purposes only. Where the thesis is converted to, or otherwise

made available in digital form, the University of Alberta will advise potential users of the thesis of these terms.

The author reserves all other publication and other rights in association with the copyright in the thesis and, except as
herein before provided, neither the thesis nor any substantial portion thereof may be printed or otherwise reproduced in

any material form whatsoever without the author's prior written permission

Dedication

To my family

Abstract

An experimental apparatus was developed capable of measuring changes in fluid viscosity occurring

due to acoustic stimulation. Controls allowed measurements at simulated oil sand reservoir

pressures and temperatures with near real-time data visualization. Calibration was performed using

NIST-traceable viscosity standards. Parametric acoustic excitation experiments were performed on

bitumen, bentonite slurries, and viscosity standards at 500psi static pressure, 20-80°C

temperatures, ±100-400psi acoustic pressures, and 5-20Hz sinusoidal frequencies.

The viscosities of bitumen and NIST standards were unaffected by excitation at any of these

amplitudes/frequencies. Bentonite showed viscosity reductions as large as 75% with a positive

correlation observed between acoustic excitation amplitude and magnitude of reduction.

Frequency variation had minimal to no effect on viscosity. Bentonite viscosities quickly approached

minimum values after the start of stimulation but took hours to plateau. Once stimulation ceased,

slurries recovered to their pre-stimulated viscosities. Viscometer damage that occurred during

testing prevented collection of results for oil sand.

Acknowledgments

This work could not have been accomplished without the support of a great many people so I would

like to take this opportunity to briefly mention those who have been such a terrific help along the

way.

First off I would like to thank Imperial Oil and the Centre for Oil Sands Innovation for their generous

funding of this project without which none of this work would be possible. In addition I would like

to single out several people who have been especially helpful: Brian Speirs and Murray Gray for

their technical support throughout the project, Keith Draganiuk for his technical assistance, Andrew

Page for his assistance with rheometer testing, and Cam McGregor for his advice and commitment

to my professional success.

 I have received advice and support from too many individuals within the staff of the mechanical

engineering department and the faculty of engineering to list all individual contributions so I will be

brief. My warmest thanks go out to the staff of the machine shop (especially Bernie Faulkner) for

their always helpful design advice, to the office staff (especially Teresa Gray and Gail Dowler) for

their cheerful help with all my administrative needs, to Dr. Subir Bhattarjee for the use of his lab

facilities, to the IT staff for always keeping me connected, to the faculty of engineering for their

scholarship support, to MEGSA for keeping life on campus both fun and interesting, to FGSR

Outreach (especially Renee Polziehn) for letting me give something back to the community, and to

the many classroom professors (especially Peter Flynn) who have shared their knowledge and life

lessons with me. I will always remember these experiences.

Outside of academic life I owe many thanks to my family and friends who have always been there

for me. To my Edmonton family for giving me a home away from home, to my immediate family for

all their support, to my newfound UofA friends for the many fun times, and to my roommate Steve

for joining me in the great Alberta adventure, thank you. Extra special thanks go out to Lindsey for

being the most patient and supportive girlfriend a guy could ask for. I could not have come this far

without her.

At last I would like to thank my advisors on this project, Dr. Mike Lipsett and Dr. David Nobes. I

can’t even begin to describe how much I have learned from them these past years. Through thick

and thin they have always been supportive of me on both a professional and a personal level and

have played a major role in shaping me into the person I am today. I count myself truly lucky to

have had such great role models and wish them the best of luck in the future.

To any whom I have forgotten here, thank you!

Table of Contents

Dedication

Abstract

Acknowledgments

Table of Contents

List of Tables

Table of Figures

Nomenclature

Chapter 1 Introduction ... 1

1.1 Oil Sand..1

1.2 Production Technologies ...3

1.2.1 Mechanical Separation + Clark Hot Water Process ... 3
1.2.2 In-Situ Thermal Separation .. 4
1.2.3 In-Situ Chemical Separation ... 4

1.3 Inaccessible Oil Sand Reserves ..5

1.4 Motivation ...6

Chapter 2 Relevant Theory and Review of the Literature ... 7

2.1 Viscosity and Rheology Theory and Terminology ...7

2.1.1 Basic Viscosity Definitions ... 7
2.1.2 Basic Rheology Definitions ... 9
2.1.3 Viscosity Measurement ... 13

2.2 Physical Properties and their Effects on Viscosity .. 18

2.2.1 Viscosity vs. Temperature .. 18
2.2.2 Viscosity vs. Pressure ... 18
2.2.3 Viscosity vs. Particle Concentration ... 19
2.2.4 Viscosity vs. Acoustic Stimulation .. 20

2.3 The Stimulation of Oil Production Reservoirs... 22

2.3.1 Industry Observations and Experiments ... 22
2.3.2 Physical Mechanisms behind the Industry Observations .. 22

Chapter 3 Experimental Methodology ... 23

3.1 Introduction ... 23

3.2 Defining the Experimental Variables ... 23

3.2.1 Identifying the Most Useful Data for Industry ... 23
3.2.2 The Model Reservoir .. 23
3.2.3 Experimental Variables .. 25

3.3 Experimental Equipment .. 29

3.3.1 Design Requirements ... 29
3.3.2 Test Chamber Concept .. 31
3.3.3 Instrument Selection and Integration ... 32
3.3.4 Mechanical Design and Analyses ... 43
3.3.5 System Integration and Control ... 43
3.3.6 Post-Processing Software .. 52

3.4 Design of the Acoustic Excitation Experiment .. 52

3.4.1 Parametric Study ... 52
3.4.2 Test Matrix ... 54

3.5 Summary .. 55

Chapter 4 System Commissioning and Calibration ... 56

4.1 Introduction ... 56

4.2 Fluid Characterization ... 56

4.2.1 Rheology Experiments ... 56
4.2.2 Results .. 57

4.3 Sensor Calibration .. 59

4.3.1 Temperature Sensor Calibration ... 59
4.3.2 Pressure Sensor Calibration ... 59
4.3.3 Viscometer Calibration .. 60

4.4 System Commissioning ... 61

4.4.1 Temperature Control System Commissioning ... 61
4.4.2 Pressure Vessel Commissioning .. 63
4.4.3 Acoustic Excitation System Commissioning ... 65

4.5 Summary .. 70

Chapter 5 Acoustic Excitation Experiments .. 71

5.1 Introduction ... 71

5.1.1 Time Series Plots .. 71
5.1.2 Amplitude Frequency Plots .. 72

5.2 N2500 Calibration Standard .. 75

5.2.1 Amplitude/Frequency Plot .. 75

5.3 Bentonite ... 76

5.3.1 Amplitude/Frequency Plot .. 76
5.3.2 Time Series Plots .. 77

5.4 Bitumen ... 86

5.4.1 Amplitude/Frequency Plot .. 86

5.5 Cornstarch and Oil Sand .. 87

Chapter 6 Conclusions and Recommendations for Future Work 88

6.1 Conclusions .. 88

6.1.1 Experimental Apparatus Development ... 88
6.1.2 Experimental Results ... 89

6.2 Recommendations for Future Work .. 91

References .. 93

Appendices ... 96

Appendix A Pressure Vessel Design .. 96

Appendix B Thermal Design ... 98

Appendix C Modal Analysis .. 99

Appendix D Acoustic Pressure Amplitude ... 104

Appendix E Description of Damage to the Viscometer .. 106

Appendix F Solidworks Drawings ... 108

Appendix G Monitoring and Control Software Source Code .. 132

Appendix H MATLAB Post Processing Software Source Code ... 169

List of Tables

Table 1 - Overview of bitumen production strategies ... 5

Table 2 - Characteristics of inaccessible oil sand reservoirs .. 6

Table 3 - Experimental apparatus design requirements identified using experimental variables 30

Table 4 – Supplementary design requirements of the experimental apparatus concept................... 31

Table 5 - Programming requirements for each instrument .. 49

Table 6 - Test matrix for acoustic excitation experiments .. 55

Table 7 - Summarized results of the fluid characterization experiments.. 58

Table 8 - Maximum pressurization frequencies/amplitudes achievable with N2500 69

Table of Figures

Figure 1 - Three main oil sand deposits in Alberta: Athabasca, Cold Lake, and Peace River.

Image courtesy of (UBC Department of Forestry) ... 2

Figure 2 - Comparison of proven oil reserves by country. Image from (Department of Energy,

2008) .. 3

Figure 3 – Relationship between shear stress and shear rate for Newtonian, pseudoplastic,

and dilatant fluids. Figure reproduced from (Fox, McDonald, & Pritchard, 2006) 9

Figure 4 - Viscous behaviour of a yielding pseudoplastic fluid under constant temperature and

pressure subjected to a varying shear rate .. 10

Figure 5 – Complete and incomplete thixotropic behaviour in a pseudoplastic fluid 11

Figure 6 - Viscous behaviour of a dilatant fluid undergoing a significant increase in apparent

viscosity .. 12

Figure 7 - Complete and incomplete rheopectic behaviour in a dilatant fluid 13

Figure 8 - Schematic of a coned-spindle Couette rheometer ... 15

Figure 9 - Schematic of Ostwald capillary viscometer ... 16

Figure 10 - Graph of viscosity versus pressure and temperature for a gas-free Athabasca (ARC)

bitumen. Reproduced from (Mehrotra & Svrcek, 1986) ... 19

Figure 11 – Graph illustrating increased viscosity reductions with increased stimulation

amplitude. Figure from (Ariadji, 2005) .. 21

Figure 12 – Graph illustrating the optimum stimulation frequency for achieving the maximum

viscosity reduction in an oil. Figure from (Ariadji, 2005) .. 21

Figure 13 - Pictorial representation of an acoustic stimulation source in a model reservoir at

depth. ... 25

Figure 14 - Experimental apparatus chamber concept ... 31

Figure 15 - CAD Rendering of Hydramotion VJ1-100 Viscometer ... 33

Figure 16 - Cole-Parmer 12101-41 digital heating/cooling circulating bath with onboard digital

controller. ... 34

Figure 17 - NI cDAQ-9172 chassis with an assortment of signal conditioning modules 35

Figure 18 - 3-wire RTD mounted in an NPT Swagelok fitting. ... 36

Figure 19 - Left: American Sensor Technologies flush mounted pressure transducer. Right: NI

9205 analog input modules. Image Source: www.zone.ni.com .. 37

Figure 20 - Hydraulic piston installation at base of test chamber. (O-ring seals not shown) 39

Figure 21 – Plot showing the typical pressure response of a test fluid to compression by the

tensile testing machine piston. .. 40

Figure 22 - Sectioned CAD rendering of experimental apparatus chamber.. 41

Figure 23 - Sectioned CAD rendering of the final test chamber shown with all sensor

equipment installed. .. 42

Figure 24 - Process and instrumentation diagram of the experimental equipment setup 44

Figure 25 - Schematic of the electronics enclosure showing both the wiring layout and the

physical arrangement of components. .. 46

Figure 26 – (a) Electronics enclosure (grey) mounted to the chamber support frame. (b)

Inside view of the electronics enclosure showing the wiring when using all

available chamber sensors. .. 47

Figure 27 - High-level flow chart of monitoring and control software. ... 48

Figure 28 – Screenshot of the monitoring and control program GUI showing data readouts 51

Figure 29 - High level procedure for the acoustic excitation parametric study 53

Figure 30 - Simulated result of an acoustic excitation procedure showing two frequency

setpoints. .. 54

Figure 31 - Time series plot of a Couette rheometer experiment procedure for an example

pseudoplastic fluid. .. 57

Figure 32 – Shear-rate dependent viscosity result showing pseudoplastic behaviour in a

bentonite slurry (17% mass concentration). .. 58

Figure 33 – Plot of NIST traceable viscosity values and viscosity calibration data for N2500............. 61

Figure 34 - Oscilloscope trace illustrating non-linear pressurization due to residual gas in the

test chamber .. 66

Figure 35 – Plot of piston position against chamber pressure showing linear and non-linear

pressurization regions and state of residual gas. ... 67

Figure 36 – Zoomed in oscilloscope trace of a dynamic pressurization experiment illustrating

the pressure drop seen at high pressurization frequencies .. 69

Figure 37 - Schematic representation of time dependent viscous behaviour illustrating the

‘baseline’, ‘stimulated’, and ‘recovered’ viscosities .. 72

file:///C:/Users/Marc/Documents/My%20Dropbox/Research/Thesis/Working%20Document/Thesis.docx%23_Toc331634321

Figure 38 – Sample amplitude frequency plot depicting measurably significant (green) and

insignificant (blue) results of an acoustic excitation experiment 74

Figure 39 - Amplitude frequency plot for N2500 calibration standard ... 75

Figure 40 - Amplitude frequency plot for bentonite (13% mass concentration) 76

Figure 41 - Time series plot of a bentonite sample stimulated at ±400 psi at 5Hz exhibiting

changes in viscosity .. 78

Figure 42 - Time series plots of a bentonite sample stimulated at ±200 psi at 5, 10, 15, and 20

Hz .. 80

Figure 43 - Enlarged graph of a final viscosity drop illustrating how viscosity drop magnitude

and drop time are measured ... 81

Figure 44 - Plot showing the magnitude and duration of a viscosity and pressure drop

observed immediately following the termination of stimulation in a bentonite

slurry (±200 psi @ 15Hz). ... 82

Figure 45 - Time series plot of a bentonite sample illustrating how viscosity drops to a

minimum value irrespective of whether recovery is allowed to complete 83

Figure 46 - Graph showing the thixotropic recovery of a recently stimulated bentonite sample

against the viscosity of a newly mixed bentonite sample ... 85

Figure 47 - Amplitude frequency plot for bitumen at 80°C... 86

Figure 48- Left: Stress distribution in the chamber structure (from a Solidworks COSMOS FEA

internal pressure study). Right: Main body of the chamber being manufactured on

the CNC mill (water jacket was later welded on). .. 97

Figure 49 - Lumped parameter model of the radial motion of the test chamber. Note: Sensor

ports were not considered in the radial model. .. 100

Figure 50 – Lumped parameter model of the longitudinal motion of the test chamber. Note:

The water jacket was not considered in the longitudinal model. 101

Figure 51 - Network diagram (top) and free-body diagrams (bottom) governing radial motion 102

Figure 52 –Network diagram (left) and free-body diagrams (right) governing longitudinal

motion .. 103

Figure 53 - Schematic diagrams showing inhomogeneous packing of oil sand in the test

chamber (left) and material resettling which caused the viscometer to be bent

(right) .. 107

Nomenclature

 Shear Stress

 Shear Rate

 Flow Behaviour Index

 Consistency Index

µ Absolute (or Dynamic) Viscosity

 Apparent Viscosity

 Low-Shear Viscosity

 Infinite-Shear Viscosity

 Arrhenius Constants

 Absolute Temperature

 Spring Constants

 Lumped Parameter Masses

 Displacements

 Volume

 Isothermal Compressibility

 Pressure

 Test Chamber Inner Diameter

 Test Chamber Axial Length

 Piston Stroke Length

 Piston Diameter

1

Chapter 1 Introduction

The natural resource industry is an integral part of Canada’s economy. Of the country’s resources,

perhaps the most discussed in recent years and arguably one of the most important for the country

are the oil sands found in Northern Alberta. Vast reserves of a heavy oil known as bitumen sit

largely untapped because of the unique challenges associated with recovery and processing of the

resource. Increased oil prices paired with advances in technology made over the past five decades

however, have turned unconventional oil production from oil sands into a very profitable industry

and a major source of employment. A recent publication by the government of Alberta showed

that one in six Albertans was directly or indirectly employed by the energy industry (Department of

Energy, 2008). This change to profitability has attracted significant investment in recent years from

many domestic and international oil companies seeking to establish new operations and expand

existing operations in the oil sands.

In the past decade, large amounts of research funding have gone into the development of this

industry. The two areas of research that have received the most funding are bitumen upgrading

and resource recovery (Heidrick, Bilodeau, & Godin, 2004). The thesis work falls under the latter

topic so this introduction is designed to give the reader an understanding of the industry and some

of the challenges associated with resource recovery.

1.1 Oil Sand

Oil sand is a naturally occurring mixture of quartz sand (75-80%), silt, clay, water (3-5%), trace

minerals, and bitumen (10-12%). Deeply buried oil sands contain high concentrations of dissolved

hydrocarbon gases in the pore fluid as well (Agar, Morgenstern, & Scott, 1987). The target fraction,

bitumen, is a heavy petroleum (API gravity of 8° to 14°) of residuals and asphaltenes, which once

recovered, is refined into a range of lighter petroleum products in a process known as upgrading

(Hirsch, 2005). The term API gravity refers to the American Petroleum Institute’s measure of how

heavy a petroleum substance is relative to water. Oil with a specific gravity of 1 will measure 10° on

the API gravity scale, hence, the density of bitumen is comparable to that of water.

2

Alberta contains the largest concentration of oil sands in the world, the majority of which are found

in three main deposits in the Northern half of the province. These three deposits, shown in Figure

1, cover an area of 140,000 km2 and contain an estimated 1.7 trillion barrels of oil (Allen, 2008).

Figure 1 - Three main oil sand deposits in Alberta: Athabasca, Cold Lake, and Peace River. Image courtesy of (UBC
Department of Forestry)

Of these reserves, a fraction are deemed to be “proven” reserves, meaning that they are known to

be recoverable using existing technologies (Department of Energy, 2008). Estimates for proven

reserves have been reported as low as 173 billion barrels (Department of Energy, 2008) and as high

as 178 billion barrels (Hirsch, 2005). Similarly, other sources have put the quantity of unproven

reserves as low as 1.5 trillion barrels (Heidrick, Bilodeau, & Godin, 2004) and as high as 2.5 trillion

barrels (Hirsch, 2005). Approximately 1.5 trillion barrels of the oil sand are located underground in

what are known as “in-situ” reserves and the remaining 200 billion barrels are located close to the

surface at depths of less than 75 meters. Figure 2 compares Canada’s proven reserves to the

proven reserves in the world’s other major oil producing countries.

3

Figure 2 - Comparison of proven oil reserves by country. Image from (Department of Energy, 2008)

1.2 Production Technologies

The fact that proven reserves make up only 10% of the total available resource in Alberta

emphasizes one of the major challenges in the industry, developing effective methods for bitumen

production. Bitumen is rigidly attached to the other oil sand constituents so the challenge in

production is finding a technology capable of isolating the bitumen.

Three main production strategies are currently in use for producing bitumen from oil sand. A brief

introduction to each process is given below.

1.2.1 Mechanical Separation + Clark Hot Water Process

The most widely employed process at the moment involves open-pit truck and shovel mining of oil

sand at shallow depths. The oil sand is transported to extraction plants which recover the bitumen

using variants of the Clark hot water process (Clark, 1931). This production method accounts for

65% of current bitumen production and has received the most negative publicity in recent years

due to the large quantities of tailings that are produced during extraction. Approximately 1m3 of oil

sand is required to produce 1 barrel of oil using this method (Allen, 2008).

4

1.2.2 In-Situ Thermal Separation

In-situ thermal production methods are the next most widely used in Alberta. These processes act

by injecting heat into underground reservoirs in order to reduce the viscosity of the bitumen

fraction. The mobile bitumen is then pumped to the surface through either the same well that

delivered the thermal stimulation or another nearby well. Thermal processes are highly subject to

geological conditions in the reservoir (e.g. ground porosity, availability of cap rock, etc.) as they can

have a large effect on the heating efficiency. Two proven processes of this type are:

i. Steam Assisted Gravity Drainage (SAGD)

 Two parallel horizontal wells are drilled into a reservoir so that one is directly

above the other. Steam is delivered through the top well, heating the reservoir

and reducing the viscosity of the bitumen, which then flows down into the

production well under the force of gravity.

ii. Cyclic Steam Stimulation (CSS)

 A vertical well is drilled into a deposit and over several weeks, steam is pumped

into the reservoir at high pressure and left to soak. The bitumen fraction

undergoes a decrease in viscosity due to the heat, and radial cracks are formed

as a result of the high pressure. The mobile bitumen is pumped back through

the cracks out the initial well.

1.2.3 In-Situ Chemical Separation

Similar to the thermal processes, the chemical processes rely on an in-situ reduction of bitumen

viscosity. The reduction results from the introduction of a chemical solvent through the well

allowing the bitumen fraction to be pumped to the surface. As in the thermal processes, specific

geological conditions are required for efficient delivery of the viscosity reduction stimulation

(Hirsch, 2005). One process of this type is:

5

i. Vaporized Extraction (VAPEX)

 Two parallel horizontal wells are drilled into a reservoir so that one is directly

above the other. A vaporized hydrocarbon solvent is injected into the reservoir

through the upper well which reduces the viscosity of the surrounding bitumen

and allows it to flow into the production well under the force of gravity.

The following table summarizes the three main strategies for bitumen recovery and provides some

operational data for each. Summarized from (Hirsch, 2005), (Isaacs, 2005).

Table 1 - Overview of bitumen production strategies

1.3 Inaccessible Oil Sand Reserves

A review published in 2004 by the Alberta Energy Research Institute classified three major reservoir

types that required advances in production technology before they could be exploited. These

reservoir types are listed in Table 2 below. Reproduced from (Heidrick, Bilodeau, & Godin, 2004).

Production
Strategy

Target Reservoir
Characteristics

Operating Cost
($/barrel)

% Bitumen
Recovery

Extraction
Mechanism

Mechanical
Separation

Depth: less than 30-75 m

Thickness: greater than 3 m
Proven Volume: 9.4B m3

$6-10 >90%
(After Mining)

Clark Hot
Water Process

Thermal
Separation

Depth: greater than 75-80 m
Thickness: greater than 10 m

Proven Volume: 69B m3

$8-14
SAGD: 50-60%
CSS: 20-25%

Viscosity
Reduction

Chemical
Separation

Not Available

Not Available Not Available

Viscosity
Reduction

6

Table 2 - Characteristics of inaccessible oil sand reservoirs

 Reservoir Type

Reservoir
Characteristic

Thinner than
Current SAGD

and CSS

Shallower Depth
than Current SAGD

and CSS

Bitumen in
Carbonates

Depth > 75-80 m 40 to 80 m
Bitumen in
Carbonate
Reservoirs

Thickness 10 to 1.5 m > 10 m

Saturation > 8-10 % mass > 6 % mass

In Place Volume ~ 12 billion m3 ~ 4.4 billion m3 71.1 billion m3

Current Recovery 0 % 0% 0 %

Opportunities
New Exploitation

Methods
New Exploitation

Methods
New Exploitation

Methods

The “Shallower Depth than Current SAGD and CSS” reservoirs are of interest in this thesis. Using

the median reported value of proven deposits, this shallow oil sand, if exploited, would increase the

quantity of proven reserves by approximately 16%.

1.4 Motivation

As evidenced from Table 1, production methods that rely on the reduction of bitumen viscosity

have been the most widely adopted for in-situ recovery. With the long term aim of developing a

new production technology for exploiting the shallow reservoirs mentioned in Table 2, this work

investigates an alternative method for reducing the viscosity of bitumen.

7

Chapter 2 Relevant Theory and Review of the Literature

The following review is broken into three main sections. The first deals with the fundamentals of

viscosity and rheology theory and methods for viscosity measurement. This is followed by a

discussion of the effects of physical properties such as temperature, pressure, and acoustic

excitation on the viscosity of fluids. The chapter ends with a review of industry experiments and

anecdotal evidence pertaining to the stimulation of oil production reservoirs.

2.1 Viscosity and Rheology Theory and Terminology

This section introduces the theory behind some of the concepts of viscosity and rheology used in

later discussion. The main sources for this information were (Mezger, 2006), (Bair, 2007), and (Fox,

McDonald, & Pritchard, 2006).

2.1.1 Basic Viscosity Definitions

At a fundamental mathematical level, viscosity is defined as the relationship between the shear

stress applied to a fluid and the resulting deformation of the fluid (expressed as shear rate). This

definition encompasses two distinct classes of fluids, those that exhibit a proportional relationship

between shear stress and shear rate, called Newtonian fluids, and those that do not, called non-

Newtonian fluids. For one-dimensional flow, both categories of fluids may be described using the

power law model below.

 Equation 1 - Power law relationship for fluid viscosity

8

Equation 1 is a modified form of Newton’s law of viscosity. In this expression is the flow

behaviour index, is the consistency index, is the shear stress and

 is the shear rate

(commonly denoted). For Newtonian fluids (where shear stress is proportional to shear rate), the

flow behaviour index is equal to 1 and the expression is reduced to that shown below.

 Equation 2 - Power law relationship for Newtonian fluids

In this case, “ ” is the coefficient of proportionality between the shear stress and shear rate. It is

customary to then represent it by the symbol “µ”, which is called the absolute (or dynamic)

viscosity of the fluid.

Equation 1 is commonly restructured for non-Newtonian fluids. By replacing the first terms by the

symbol “ ”, Equation 1 takes on a similar form to Equation 2.

Equation 3 - Power law relationship for non-Newtonian

fluids

In Equation 3, known as the Power Law or Ostwald de Waele Equation (Krishnan & Aghijit, 2010),

the coefficient “ ” (called the apparent viscosity) relates the shear stress to the shear rate. The

study of this shear rate-dependent viscosity and the time effects surrounding it is known as

rheology.

The apparent viscosity of a non-Newtonian fluid may exhibit a positive or a negative correlation

with shear rate and as such defines two sub-classes of non-Newtonian fluids. The first type, known

as a shear thinning or pseudoplastic fluid, is one where the apparent viscosity decreases as shear

rate increases (i.e. where <1). These types of fluids flow more easily when sheared. The second

9

type, known as a shear thickening or dilatant fluid, is one where the apparent viscosity increases as

shear rate increases (i.e. where >1). These types of fluids show an increased resistance to flow

when sheared. These behaviours are summarized in Figure 3 below.

S
h

e
a

r
S

tr
e

s
s

Shear Rate

Pseudoplastic

Dilatant

Newtonian

Figure 3 – Relationship between shear stress and shear rate for Newtonian, pseudoplastic, and dilatant fluids. Figure
reproduced from (Fox, McDonald, & Pritchard, 2006)

2.1.2 Basic Rheology Definitions

Figure 4 provides a useful reference for describing a number of the rheology terms and behaviors

observed in pseudoplastic fluids. This graph shows the results of a typical rheological experiment

wherein a fluid at constant temperature and pressure is subjected to a gradually increasing shear

rate whilst measuring its apparent viscosity.

10

A
p

p
a

re
n

t
V

is
c
o

s
it
y
 η

Shear Rate

Low-Shear Viscosity η0

Yield Point or

Critical Shear Rate

Infinite-Shear Viscosity η∞

Zone 1 Zone 2 Zone 3

Shear Thinning

Figure 4 - Viscous behaviour of a yielding pseudoplastic fluid under constant temperature and pressure subjected to a
varying shear rate

Three distinct zones are noted on the graph. The first, occurring at low shear rates, is known as the

low-shear viscosity (denoted). When subjected to sufficiently low shear rates (when the fluid is

effectively undisturbed) many pseudoplastic fluids exhibit a constant viscosity value. As the shear

rate is increased past a critical value (sometimes described as the yield stress), the fluid enters the

second zone and begins to exhibit observable shear-thinning behavior. Finally, as shear rate is

increased further, the viscosity plateaus at a minimum value known as the infinite-shear viscosity

(denoted). In this third zone, shear is sufficiently high that any macro-scale particles in the fluid

do not have enough time to return to a state where they significantly interfere with each other.

Resistance to flow occurs solely from molecules rubbing against one another and intermolecular

forces.

Many dispersions exhibit this characteristic type of behavior. In the first zone, the degree of

interaction between particles in the fluid is sufficiently high as to provide a high resistance to flow.

As shear rate is increased beyond the yield stress, particles begin to orient themselves in the

shearing direction resulting in less particle interactions and less resistance to flow. In the third

11

zone, particles may be completely separated into bands of shear flow such that they undergo

minimal interaction and thus exhibit minimum resistance to flow.

In addition to varying with shear rate, the apparent viscosity of a pseudoplastic fluid can vary with

time. Figure 5 illustrates this behavior, which is known as thixotropy. When the shear stress is

removed from a thixotropic fluid, the apparent viscosity does not immediately return to the low-

shear value but rather undergoes a period of thixotropic recovery.

A
p

p
a

re
n

t
V

is
c
o

s
it
y
 η

Time

Shear at Constant

Shear Rate

Low-Shear Viscosity η0

Incomplete or False

Thixotropy

No Shear

(Thixotropic Recovery)

Complete Thixotropy

Figure 5 – Complete and incomplete thixotropic behaviour in a pseudoplastic fluid

A true thixotropic fluid will undergo a complete regeneration of its internal structure during

thixotropic recovery and will thus return it to its low-shear viscosity over time. Several factors may

disrupt this complete regeneration. Sufficiently high shear rates can cause particles in a

pseudoplastic fluid to change form, thereby preventing the fluid from ever returning to its low-

shear viscosity. This is known as an incomplete or false thixotropy. Further, high enough shear

rates may cause fluids to undergo molecular degradation which can cause pseudoplastic fluids to

exhibit Newtonian behavior.

12

Bentonite mixtures are known to display thixotropic behaviour and exhibit increased viscosity with

increasing bentonite concentration (Grim & Necip, 1978). Mixtures in excess of 5% concentration

by mass will exhibit thixotropy (Haydn, 2006).

Dilatant fluids do not exhibit the same zones of behavior described in Figure 4. The low-shear

viscosity is followed by a zone of shear thickening behavior until the point where there is sufficient

resistance to flow that the fluid begins to act as a solid. Sufficiently high shear rates will “tear” the

fluid and as such the concept of infinite shear viscosity does not apply to dilatant fluids. Figure 6

illustrates this behavior.

A
p

p
a

re
n

t
V

is
c
o

s
it
y
 η

Shear Rate

Low-Shear Viscosity η0

Fluid begins acting

like a solid and

may tear

Figure 6 - Viscous behaviour of a dilatant fluid undergoing a significant increase in apparent viscosity

Dilatant fluids do however exhibit time-dependent viscosity behavior similar to thixotropy. This

time-dependent behavior is known as rheopexy and is characterized by a gradual decrease in

viscosity after a period of shearing. Similar to thixotropy, rheopexy is a completely reversible

process unless a permanent degradation occurs in the fluid due to excessive shear. Figure 7

13

illustrates rheopexy in a dilatant fluid that experience a period of shear at a constant rate followed

by a period of no shear.

A
p

p
a

re
n

t
V

is
c
o

s
it
y

Time

Shear at Constant

Shear Rate

Low-Shear Viscosity

Incomplete or False

Rheopexy

No Shear

(Rheopectic Recovery)

Complete Rheopexy

Figure 7 - Complete and incomplete rheopectic behaviour in a dilatant fluid

2.1.3 Viscosity Measurement

Viscosity is an indirect measurement, meaning that it is inferred from other directly measurable

properties such as torque or speed (Mezger, 2006). Two types of measurement devices exist in this

field:

1. Rheometers, which relate stress to fluid deformation and are thus capable of measuring

apparent and absolute (shear rate dependent) viscosity, and

2. Viscometers, which operate at a single rate or speed and are thus only capable of

measuring the absolute viscosity in Newtonian fluids or the Newtonian viscosity plateaus

(infinite-shear or low-shear viscosity) of non-Newtonian fluids.

The more commonly used methods of obtaining viscosity measurements are:

14

 Rotational Couette Rheometers

 Capillary Viscometers

 Dropping Ball and Rolling Ball Viscometers

 Vibrating Wire Viscometers

 Oscillating Viscometers

2.1.3.1 Rotational Couette Rheometers

Rotational Couette rheometers infer viscosity by measuring the torque or rotational speed of a

cylindrical spindle as it is rotated in a fluid sample. Figure 8 illustrates a typical setup for a conical

rheometer. By applying a defined torque and measuring the rotational speed of the spindle or vice-

versa, the viscosity (absolute or apparent) of the fluid can be calculated using Newton’s law of

viscosity. Since the surface areas in contact with the fluid are known, spindle torque can be

converted to shear stress. Similarly, since the gap between the spindle and the fluid reservoir is

known, the rotational speed of the spindle can be converted to shear rate as long as there is no slip

between the fluid and viscometer surfaces. Couette rheometers are commonly used for measuring

viscosity at low pressure and they are seldom used for high pressures measurements due to

difficulties in sealing the rotating components (Bair, 2007).

15

Test

Sample

Spindle

Motor & Electronic Control Unit
Test Data (to PC)

Temperature-

Controlled Sample

Container

Figure 8 - Schematic of a coned-spindle Couette rheometer

2.1.3.2 Capillary Viscometers

Capillary viscometers infer the kinematic viscosity of fluids by measuring the time taken for a known

volume of fluid to pass through a narrow section of tube known as the capillary. The sample is

drawn up beyond the capillary section by vacuum then released and allowed to flow through the

tube. Fluid resistance along the walls of the capillary slows the fluid by a factor related to the

viscosity of the fluid. Measuring the time taken for the meniscus to cross between the start and

stop line allows for a quick computation of viscosity. Typically made of glass, time measurements

can be made by eye using either a stopwatch or more accurately with a video camera or other

automatic means. Figure 9 shows the simplest form of capillary viscometer, known as an Ostwald

viscometer.

16

Start Line

Stop Line

Capillary Fluid

Reservoir

Known

Volume

Figure 9 - Schematic of Ostwald capillary viscometer

2.1.3.3 Dropping Ball and Rolling Ball Viscometers

Dropping ball or rolling ball viscometers infer viscosity by measuring the time taken for a sphere to

fall or roll from one level in a tight-fitting liquid filled tube to another. The time taken to travel the

distance at a steady-state velocity is a function of the internal fluid resistance and therefore the

viscosity of the fluid. The simple design allows dropping/rolling ball viscometers to be used for

high-pressure viscosity measurements, upwards of 8 GPa (1.16x106 psi). Since it is important that

the sphere be traveling at a steady state velocity as it passes between the different levels,

dropping/rolling ball viscometers are often built of transparent materials to facilitate velocity

observation. Since high- pressure instruments cannot be built with such materials, inductance coils

are placed around the tube to provide a way of partially tracking the sphere’s position during the

traverse. The accuracy of such instruments is adversely affected by the inability to continuously

measure velocity.

17

2.1.3.4 Vibrating Wire Viscometers

Vibrating wire viscometers function by vibrating a tensioned wire near its resonant frequency in a

test fluid. A magnetic field is introduced and the frequency dependent voltage induced across the

wire is measured. Simultaneous viscosity and density measurements are calculated using the

Navier-Stokes solution to the vibrating wire problem. This type of viscometer was only introduced

in 2004 and as such limited information is available on its full capabilities. (Bair, 2007) suggests that

it is one of the most accurate methods of viscosity measurement but is limited in the range of

viscosities that the device can measure.

2.1.3.5 Vibrational Viscometers

Vibrational viscometers operate on the principal that the motion of a rotationally oscillating bulb

within a fluid undergoes damping as a result of viscous forces. Such viscometers may operate in

several different manners to infer viscosity from the damping:

 Continuously vibrating the bulb and measuring the phase lag between the excitation and

response signals

 Cutting off the excitation signal to the bulb and measuring the attenuation time (e.g. using

the method of logarithmic decrement)

 Measuring the input power needed to keep the bulb vibrating at a given amplitude

Minimal oscillatory motion is required for these measurements so such viscometers are easily

sealed for operation at pressure. In addition to this, since the above measurements can be taken in

near real-time, vibrational viscometers are often used as process viscometers.

18

2.2 Physical Properties and their Effects on Viscosity

2.2.1 Viscosity vs. Temperature

Of the thermodynamic properties, temperature is known to have the greatest effect on viscosity.

As temperature of a fluid is increased, its viscosity decreases exponentially such that small changes

in temperature can result in significant changes in viscosity. This behavior is often described by the

Arrhenius relationship of Equation 4 where “ ” and “ ” are experimentally determined constants

of the liquid and “ ” is the absolute temperature (Krishnan & Aghijit, 2010).

Equation 4 - Arrhenius relationship between temperature and viscosity

High viscosity materials exhibit greater temperature dependence thus, as stated in Chapter 1,

elevating temperature is a well-suited method for liquefying the high viscosity bitumen in current

in-situ oil sand production technologies.

2.2.2 Viscosity vs. Pressure

In contrast with temperature, pressure has the opposite effect on the viscosity of liquids. As

pressure is increased, the intermolecular spacing in the fluid decreases causing increased

interaction and thus an increased fluid viscosity. This effect is most pronounced in high molecular

weight fluids and in polymers with a high degree of branching (Mezger, 2006). Contrary to

temperature, the relationship between viscosity and pressure is linear until high pressures (beyond

the glass transition of the fluid, >1.2 GPa (Mezger, 2006) or >2GPa (Bair, 2007)) where it begins to

exhibit solid-like behavior.

Figure 10 illustrates the temperature and pressure dependence of viscosity for a gas-free Athabasca

bitumen. It should be noted that review of similar graphs prepared by other academic and industry

sources, viscous behavior is similar in all cases but with slight variations depending on the location

19

of the bitumen reservoir from which the test samples were collected. The sample used in the figure

below exhibit behavior typical of Peace River bitumen.

Figure 10 - Graph of viscosity versus pressure and temperature for a gas-free Athabasca (ARC) bitumen. Reproduced
from (Mehrotra & Svrcek, 1986)

2.2.3 Viscosity vs. Particle Concentration

While temperature and pressure changes result in either an increase or a decrease in fluid viscosity,

a change in the particle properties may cause fluids to exhibit entirely different viscous behavior. If

for example, particle concentration is increased beyond a critical value in a Newtonian fluid, it will

exhibit non-Newtonian behavior, either shear-thickening or shear-thinning depending on the

concentration.

0.05

0.50

5.00

50.00

0.00 2.00 4.00 6.00 8.00 10.00

B
it

u
m

e
n

 V
is

co
si

ty
 [

P
a.

S]

Pressure [MPa]

43.1±0.2°C

58.3±0.2°C

80.5±0.1°C

103.8±0.1°C

119.7±0.1°C

20

As particle concentration is increased in a pseudoplastic fluid, the onset of shear thinning behaviour

will occur at a lower critical shear rate and at an increased rate (Chen, Chen, Wang, & Li, 2006). Still

other fluids such as aqueous suspensions of cornstarch may exhibit pseudoplastic behaviour (at low

shear rates) and dilatant behaviour (at high shear rates) depending on the particle concentration

(Merkt, Robert, & Deegan, 2004). These viscous changes cannot be accurately represented with the

power law so empirical models are typically used when dealing with such complex fluid behaviours.

Other factors such as particle size, density, and shape are known to have an effect and further

compound such modeling.

2.2.4 Viscosity vs. Acoustic Stimulation

Few experimental results are available on the effects of acoustic stimulation on fluid viscosity. Of

those found in the literature, the experiments of (Ariadji, 2005) yielded some of the most significant

findings. In the study, an oil (0.66-1.1 cP) was subjected to temperatures between 70 and 90°C and

static pressures between 1 and 3kpsi whilst measuring viscosity before and during a period of

vibration at frequencies between 5 and 40 Hz and unreported values of stimulation amplitude.

Viscosity reductions as large as 30% were observed in the test samples with vibration amplitude

having a greater effect on the viscosity change than frequency.

The result of the stimulation amplitude study just described, reproduced in Figure 11, indicate that

increasing the acoustic stimulation amplitude tended to decrease the viscosity of the oil towards

some asymptotic value. In addition, the result of their acoustic excitation frequency study, shown

in Figure 12, indicated the presence of an optimal vibration frequency for achieving viscosity

reduction. No mechanisms were mentioned or put forward for either result, however, it was

postulated that the optimum frequency may have been a local minima and that retesting at a larger

range of frequencies may have yielded a sinusoidal relationship. No explanation was offered for

this conjecture.

21

Figure 11 – Graph illustrating increased viscosity reductions with increased stimulation amplitude. Figure from (Ariadji,
2005)

Figure 12 – Graph illustrating the optimum stimulation frequency for achieving the maximum viscosity reduction in an
oil. Figure from (Ariadji, 2005)

22

2.3 The Stimulation of Oil Production Reservoirs

There exist a number of accounts in the literature where oil production in conventional reservoirs

seemed to have been affected by vibration, either man-made or naturally-occurring. A selection of

these anecdotal accounts is presented here.

2.3.1 Industry Observations and Experiments

It was noted in the extensive review by (Beresnev & Johnson, 1994) that conventional oil reservoirs

in Russia saw increased oil production following earthquakes in the nearby vicinity. Though likely

the result of large-scale ground movements, the effects were again observed when earthquakes

occurred far from the reservoir site such that ground disturbances were of low amplitude. The

review by (Huh, 2006) details some of the attempts designed to artificially stimulate other

conventional oil reservoirs. The main technologies included: ground-level mechanical (vibroseis)

(Kouznetsov, 1998) and electromagnetic (Simonov, 1996) vibration generators meant to deliver low

frequency acoustic energy from the surface down into the reservoirs and pressure pulse generating

equipment designed to deliver acoustic stresses to the reservoir from within the wellbore, both at

sonic (Kuznetsov, 2002), (Dusseault, 1993), (Zhu, Xutao, & Vajjha, 2005), (Bogolyubov & al., 2001)

and at ultrasonic frequencies (Duhon & Campbell, 1965). In most instances, production levels in

surrounding wells were reported to have increased both during and for a period after stimulation

although the physical mechanisms causing the improvements were never identified.

2.3.2 Physical Mechanisms behind the Industry Observations

Many suggestions were put forward to explain the observed production gains such as cavitation in

pore fluids (sonocapillary) (Malykh, Petrov, & Sankin, 2003), reduction of capillary forces arising

from the destruction of surface films, increased permeability (Roberts, 2005), and peristaltic

transport by mechanical vibration (Hamida & Babadaglia, 2005) but few experiments were

uncovered to support the ideas. In the review of proposed mechanisms by (Hamida & Babadaglia,

2005), citing the work by (Fairbanks & Chen, 1971), it was postulated that a reduction in fluid

23

viscosity due to the application of acoustic energy, particularly in the case of thixotropic fluids,

could be the reason for the improvement.

Chapter 3 Experimental Methodology

3.1 Introduction

Fully understanding the effects of acoustic stimulation on oil sand viscosity in a reservoir is made

complicated by the number of variables that can affect the physics. Short of doing in-situ field

experiments in a reservoir, one way to approach such a problem is to reduce the complexity of the

reservoir scenario such that it is suitable for study in the laboratory. This chapter outlines the

assumptions made in defining the scope of the lab-scale problem, describes the equipment used to

simulate reservoir conditions, and details the experiments that were performed.

3.2 Defining the Experimental Variables

3.2.1 Identifying the Most Useful Data for Industry

In industry, a tailored in-situ production strategy is developed for each reservoir that is to be

recovered. This strategy is developed using an assortment of properties about the ore body and

surrounding ground conditions as well as a fundamental physical understanding of what effect the

production strategy will have on the reservoir (e.g. hot steam injection is known to reduce the

viscosity of bitumen). Given the amount of site-specific data that is required to develop such a

strategy, it was decided that this research would be most generally useful to industry if it was

restricted in scope to establishing the fundamental physical understanding of a production strategy

that employs acoustic stimulation.

3.2.2 The Model Reservoir

In order to experimentally obtain this fundamental physical understanding, some of the

complexities of pressure wave propagation that occur in real reservoirs needed to be removed from

24

the research problem. By using a model reservoir devoid of these complexities, the resulting

experimental data would be most generally useful in describing the basic physical response of the

fluid. The first step in developing this general reservoir model was therefore to identify which

complexities of a real reservoir could be eliminated in a lab-scale experiment.

A basic understanding of the mechanics of wave propagation was used to identify which reservoir

complexities posed the biggest problem to the experimental investigation. Ore proximity to the

acoustic stimulation site, soil properties, and reservoir geometry were identified as major factors

affecting how a target ore body would be stimulated by an incident pressure wave. Attenuation and

superposition of reflected pressure waves were also identified as sources of additional difficulty in

understanding what stimulation actually occurs at the ore site. With these factors in mind, a

number of assumptions about a model reservoir were developed. These assumptions are listed

below and shown pictorially in Figure 13.

Assumption 1 The ore between the acoustic stimulation site and the target ore is homogenous

in temperature, density, water content, and chemical composition. This

eliminates the ground variations that would normally be encountered in field

reservoirs.

Assumption 2 The model reservoir is assumed to be infinite. When combined with Assumption

1, this implies that no pressure waves are reflected and therefore that no

superposition of pressure waves occurs in the target ore. This allows better

control of how the target ore in the experiment is stimulated.

Assumption 3 The target ore is far enough from the stimulation site that an incident pressure

wave is approximately planar. This allows further control of how the target ore

in the experiment is stimulated.

Assumption 4 The pressures and temperatures in the model reservoir will be of a similar

magnitude to those typically found in the intermediate depth reserves. This

ensures that experiments performed in the model reservoir are still subject to

the effects of pressure and temperature that are found in intermediate reserves.

25

Source

Volume of

Interest

Approximately

Planar Wave

Uniform

Medium

Temperature: 20-80°C

Hydrostatic Pressure:

3.45-6.89MPa

(500-1000psi)

Figure 13 - Pictorial representation of an acoustic stimulation source in a model reservoir at depth.

3.2.3 Experimental Variables

In identifying the variables of interest to the study and determining which were to be controlled

and which measured, four distinct groups were identified: those variables needed to quantify the

acoustic stimulation, those variables known to affect the viscosity of fluids, those variables needed

to validate the model reservoir assumptions, and those variables needed to quantify the viscous

response of the fluid. These are detailed below, and where applicable the appropriate variable

ranges are given along with a justification for the range.

26

3.2.3.1 Group 1 - Variables Needed to Describe the Acoustic Stimulation

In order to quantify the acoustic stimulation, the properties of the stimulation source needed to be

well characterized. Additionally, since the acoustic wave was the primary independent variable in

the research, the properties of this acoustic stimulation source needed to be both measurable and

controllable. The variables needed to describe the acoustic stimulation source were those needed

to characterize any wave, namely:

 Amplitude (Pressure)

 Frequency

 Wave Shape (e.g. Sinusoidal)

The controllable range for these variables was deemed unimportant at the onset of the research

since there was limited quantitative evidence of an effect of either dynamic pressure amplitude or

frequency on viscosity. The ranges (detailed in Chapter 4) were eventually selected based on the

capabilities of the pressure generating equipment.

3.2.3.2 Group 2 - Variables Known to Affect the Viscosity of Fluids

From the review of the literature on viscosity theory, a number of different variables were

identified which were known to have an effect on the viscosity of fluids. In order to isolate an

observed effect on viscosity by any of the Group 1 variables, each of these Group 2 variables

needed to be measured and controlled in the experiments. These variables were:

 Temperature

 Pressure

 Properties of Particles Within the Fluid (Size Distribution, Porosity, Shape, Concentration)

 Stimulation Duration (Thixotropic/Rheopectic Effects)

 Shear Rate

27

In accordance with model reservoir Assumption 4, the measurement ranges for temperature and

pressure were selected to encompass the range likely to be encountered in an actual intermediate

depth reservoir. For this reason, measurement and control in the range of 0-6.89 MPa (0-1000 psi)

for pressure and 0-80°C for temperature were selected. The measurement and control ranges for

the other variables in this group were again selected arbitrarily.

3.2.3.3 Group 3 - Variables Needed to Validate the Model Reservoir Assumptions

Conveniently, the first, second, and fourth reservoir assumptions: a uniform medium, no

superposition of pressure waves, and realistic pressures and temperatures, could be validated by

accurate measurement of the first three Group 2 variables: temperature, pressure, and particle

properties. The third assumption, a planar incident pressure wave, could be validated by carefully

designing the shape of the experimental apparatus test chamber, specifically the distance between

the stimulation source and the viscosity measurement

Initially, the distance between the stimulation source and viscosity measurement was selected to

help minimize the 3-D curvature of the incident pressure wave (as depicted in Figure 13). As the

design of the measurement apparatus evolved, a method for generating planar pressure waves

right at the stimulation source was developed and so this model reservoir assumption was deemed

accounted for.

3.2.3.4 Group 4 – Variables Needed to Quantify the Viscous Response of the Fluid

The fourth group of variables were those needed to quantify the physical response of the fluid to

the acoustic stimulation. Of principal interest here were variables used to describe the viscous

response. These were:

 Low Shear (or Low Shear) Viscosity

 Shear Rate Dependent Viscosity

28

The measurement range for each of these variables was selected based on the fluids to be tested.

Both low viscosity fluids and oil sand would be tested in the study, each one representing an

extreme of the measurement spectrum. Due to the high cost of instruments capable of measuring

such a broad range, the measurement range was decreased. In this way, a significant portion of

the measurement range was covered and measurements on oil sand could still be performed at

high temperatures where the viscosity was at its lowest. Details of the measurement range are

available in Table 3.

3.2.3.5 Test Fluids

In addition to the aforementioned physical variables, an assortment of fluids was selected for

testing. These were selected to help validate the test equipment and to broaden the data so that

the results were not only applicable to oil sands but to fluid mechanics in general. These fluids,

along with the experimental results sought from each, are listed below.

 N2500 – A NIST traceable viscosity standard for calibrating the viscosity measurement

system

 Bitumen – An Athabasca bitumen for testing the effects of acoustic excitation on the target

phase within the reservoir

 Oil Sand – A mid grade (~12% bitumen) Athabasca oil sand for testing the effects of acoustic

excitation on the multi-phase reservoir ore

 Bentonite/Water – A drilling mud for testing the effects of acoustic excitation on a

pseudoplastic fluid (13% mass concentration)

 Cornstarch/Water – A mixture for testing the effects of acoustic excitation on a dilatant

fluid (55% mass concentration)

29

3.3 Experimental Equipment

3.3.1 Design Requirements

With the scope of the experimentation and the key variables identified, the design requirements for

an experimental apparatus system concept were developed. At the highest level, each of the

system concepts needed to simulate the conditions of the model reservoir while performing

acoustic stimulation experiments at the lab scale. At the lower levels, the more specific design

requirements were identified using the variable groups listed in the previous section.

Table 3 summarizes the list of variables and the corresponding lower level design requirement that

each imposed on the experimental apparatus concepts. Each dependent variable necessitated

specific sensor equipment while each independent variable called for either control equipment or

consideration when designing the geometry of the test chamber. In addition to these variable

specific design requirements, a number of supplementary requirements were identified to ease the

operation of the device. These are outlined in Table 4.

30

Table 3 - Experimental apparatus design requirements identified using experimental variables

 Variable
Independent/

Dependent
Design Requirement

Measurement/Control
Range (if applicable)

Justification for Range

G
ro

u
p

 1
 Amplitude Independent

Acoustic Stimulation
Amplitude Control

Arbitrary Range -

Frequency Independent
Acoustic Stimulation
Frequency Control

Arbitrary range -

G
ro

u
p

 2

Temperature Independent Feedback temperature control 0 – 80°C Model Reservoir Assumption 4

Pressure Independent Feedback pressure control 0 - 6.89 MPa (0 – 1000 psi) Model Reservoir Assumption 4

Particle Properties Independent
Must be able to contain a

variety of multi-phase fluids
and resist abrasion

Range from no particles to
coarse sand grains

Oil sand contains coarse sand
grains

Stimulation Duration Independent
Acoustic stimulation source

with precisely controlled
duration

Arbitrary Range -

Shear Rate Independent
Control of shear rate in the

fluid
Arbitrary Range -

G
ro

u
p

 3

Distance between
Stimulation Source and
Viscosity Measurement

Independent
Minimize curvature of incident

pressure wave
- -

G
ro

u
p

 4
 Low Shear Viscosity Dependent Viscometer 0 – 10,000 cP

Viscosity range from water to oil
sand

Shear Rate Dependent
Viscosity

Dependent Rheometer 0 – 10,000 cP
Viscosity range from water to oil

sand

31

Table 4 – Supplementary design requirements of the experimental apparatus concept

Design Requirement Justification

Computer control of all control and data logging
operations

A transient heat transfer analysis of the
chamber geometry showed that thermal

experiments were likely to last for several hours
at a time so automation of the instruments

freed the researcher from being present for the
entire duration

Desired test chamber to be easily disassembled
and/or rotated

Facilitated chamber cleaning and material
handling operations

3.3.2 Test Chamber Concept

3.3.2.1 Conceptual Design

By taking into account all of the design requirements, a number of experimental apparatus system

concepts were developed. Though several ideas were presented for satisfying each individual

requirement, ultimately, all of the devised system concepts followed a similar test chamber design,

illustrated in Figure 14.

P

P

P

P

T

T

T

Temperature

Control

(Water Bath)

Experimental

Sample Volume
Viscometer

Dynamic

Pressure

Control

Water

Jacket

Static

Pressure

Control

Vent

Data

Acquisition

and

Experiment

Control

Figure 14 - Experimental apparatus chamber concept

Sensors

32

The test chamber concept shown in Figure 14 involved a vertically oriented, flanged pressure vessel

perforated by sensors and control equipment as called for by the various instrumentation

requirements. This design was amenable to housing a variety of multi-phase test fluids and

subjecting them to the various temperature and pressure loads specified in the model reservoir

assumptions. Additionally, this design allowed for easy reconfiguration of sensor equipment owing

to the flanged ends and multiple mounting locations along the main axis of the chamber.

With the overall concept established, the next step was the selection/design of components for

each of the specific measurement and control requirements.

3.3.3 Instrument Selection and Integration

This section presents the engineering considerations for each of the major measurement, control,

and sample containment requirements. For each design requirement, a list of the different options

considered is followed by a detailed description of the final component selected in the initial build.

Where applicable, details about the implementation and installation into the test chamber are

given.

3.3.3.1 Viscosity Measurement

One of the most critical design decisions was determining the method for measuring the viscosity of

the test sample during acoustic excitation. The review of viscosity measurement techniques (Bair,

2007) (briefly summarized in the last chapter) was useful in this matter as it dealt with some of the

difficulties of obtaining accurate measurements in devices requiring high-pressure seals. In addition

to high-pressure sealing considerations, the chosen device needed to be able to withstand typical

reservoir temperatures whilst measuring the wide range of shear rate dependent viscosities

encountered with water and oil sand.

Pressure sealing was of primary importance so a vibrational viscometer was chosen because it could

be easily mated to a flange and installed on the pressure vessel. Additionally, vibrational models

were readily available which could be interfaced with a PC and could measure the extremely wide

33

viscosity ranges required for the study. A Hydramotion VJ1-100 viscometer was selected as the

best fit for the requirements. It was capable of viscosity measurements in the range of 1 to 10,000

cP, at temperatures from -20 to 130°C. As shown in Figure 15 below, sealing was accomplished by

means of an o-ring above the device threads. PC monitoring of the measurement was established

over an RS-485 connection using the MODBUS communication protocol.

The choice to use a vibrational viscometer was a compromise, as it meant that the device was only

able to measure the infinite-shear viscosity. The measurement of shear rate dependent viscosities

was therefore only possible at atmospheric pressure using a rate-controlled Brookfield Couette

rheometer available in the Oil Sands and Coal Interfacial Engineering Facility at the University of

Alberta.

Figure 15 - CAD Rendering of Hydramotion VJ1-100 Viscometer

3.3.3.2 Temperature Control

A variety of temperature control strategies were assessed including electrical resistance heating

outside the test chamber and a variety of plumbing designs for conductive and convective heating

RS485 Output

O-ring Face Seal

Oscillating Bulb

Region in Contact with
Test Sample

Machined Thread

34

using a bath and circulating fluid. A combination heating/cooling temperature bath and welded

water jacket design was selected because this allowed for a self-contained temperature control

system and could easily accommodate the geometric constraints imposed by the sensors positioned

around the jacket of the test chamber.

In keeping with the automation design requirement, a bath was selected which could be interfaced

with a PC for both monitoring and control purposes. The Cole-Parmer 12101-41 digital

heating/cooling bath (see Figure 16) provided this functionality via RS-232 serial connection.

Figure 16 - Cole-Parmer 12101-41 digital heating/cooling circulating bath with onboard digital controller.
Note: Fluid inlet and outlet ports as well as serial connection are located at the rear of the device

Image Source: www.coleparmer.ca

A 50/50 mixture of ethylene glycol and water was used within the range of -40°C to 105°C and

controlled by temperature feedback electronics and heating/cooling elements in the circulating

bath. This fluid was pumped from the bath through the fluid jacket around the test sample,

transferring and removing heat from the test sample by means of conduction through the chamber

walls.

A few modifications were made to the thermal system during the work. The polyethylene tubing

initially used for all fluid connections on the water jacket was later replaced by Swagelok tubing

when leaking became an issue. Adhesive-backed 25.4mm (1in) foam insulation was added to the

outside of the water jacket to improve the heating and cooling performance at the extremes of the

35

temperature range; and an external RTD was later added to allow the temperature feedback signal

to come from the site of viscosity measurement within the fluid.

3.3.3.3 Data Acquisition System

A data acquisition system was required that could interface the control software with the pressure

and temperature transducers and allow data logging on an attached PC. A National Instruments

CompactDAQ system was selected for its ease of integration with the National Instruments

LabWindows/CVI programming environment. Specifically, the NI cDAQ-9172 chassis housed eight

signal conditioning modules which could be easily configured to allow a variety of wired sensors to

be connected to the PC via USB through the chassis. This hardware was also able to make use of

the wiring and sensor calibration utilities built into the National Instruments programming

environment as well as the DAQmx programming functions, all of which greatly facilitated system

commissioning. The chassis is shown below in Figure 17 beside several signal conditioning modules.

Figure 17 - NI cDAQ-9172 chassis with an assortment of signal conditioning modules
Image Source: www.zone.ni.com (Accessed December 2009)

3.3.3.4 Temperature Measurement

There were four design considerations when selecting temperature sensors: (1) sensors had to be

able to measure temperature within the range of 0 to 80°C, (2) had to be able to withstand

36

sustained contact with abrasive fluids such as oil sand, (3) had to be installed in a high pressure

environment, and (4) had to be interfaced with the NI DAQ system. Off-the-shelf resistance

temperature detectors were capable of achieving (1) and (2) and could be mounted in a high

pressure environment (3) when installed using Swagelok fittings so they were an ideal choice. The

sensors could be interfaced with the NI DAQ chassis through the use of NI 9217 analog RTD input

modules.

The sensors selected were 100 Ω Platinum 3-wire RTDs housed in 316 stainless steel sheaths from

Aircom Industries (RT4-GP-B-S-3-36-4-T-2-MC-X-LT). The photograph in Figure 18 shows one of

these RTDs mounted in an NPT Swagelok fitting.

Figure 18 - 3-wire RTD mounted in an NPT Swagelok fitting.

3.3.3.5 Pressure Measurement

When selecting pressure transducers, a number of requirements needed to be considered. Sensors

had to be capable of measuring the simulated downhole pressures outlined in Table 3, had to be

mountable in the test chamber, had to be able to withstand contact with abrasive test materials

such as oil sand, and had to be interfaced with the NI DAQ system.

A series of flush-mounted pressure transducers made by American Sensor Technologies (model:

AST4700-A-02000-P-5-R-0-0233) satisfied all of these requirements. The transducers outputted a

voltage signal from 0-10 V proportional to pressures between 0 and 13.9MPa (0 and 2000psi) and

could be screwed directly into 1/2” NPT holes in the test chamber. Interfacing with the NI Compact

NPT Sealing
Thread

Steel Sheath
over RTD

37

DAQ chassis was accomplished using the 32 channel NI 9205 analog input module (±10V, 16-bit, 250

kS/s) shown in Figure 19 right.

Figure 19 - Left: American Sensor Technologies flush mounted pressure transducer. Right: NI 9205 analog input
modules. Image Source: www.zone.ni.com

3.3.3.6 Static Pressure Control

As stated in the model reservoir requirements, a method for controlling static pressure in the test

chamber was required which could both apply and vent pressures within the range 0-6.89MPa (0-

1000psi). The components used for this task evolved several times throughout the project in order

to remain compatible with the changing needs of the acoustic stimulation control equipment. Early

design iterations employed cylinders of compressed inert gas and computer controlled pressure

regulators made by Bronkhorst (model: EL-PRESS P612CV-100A-AAD) and later General Electric

(model: GE Pace 5000) to accomplish this. Aside from using the GE Pace 5000 for pressure

calibration, the final design discarded these components in favour of the hydraulically actuated

piston described in section 3.3.3.7 below, which was capable of controlling both acoustic and static

pressure simultaneously.

3.3.3.7 Acoustic Stimulation Control

Several methods for supplying and controlling the dynamic pressure amplitude and frequency were

evaluated during the apparatus conceptualization. The various designs fell into two categories:

those which generated pressure using compressed gas and those which generated pressure by

Flush-mount

NPT Sealing
Thread

38

physically compressing the test fluids. The former were discarded owing to the fact that they would

require a very large supply of compressed gas since each pressure pulse would have involved the

chamber being pressurized and then vented. Designs utilizing physical compression of the fluid on

the other hand only required some form of oscillating piston to compress the test fluid by a

precisely controlled amount thus there were minimal material requirements after the initial

manufacturing cost.

Using physical compression of the fluid, pulse amplitude was controlled by piston displacement

(change in volume) and stimulation frequency by piston frequency. What remained was to

precisely control these two motions. Two designs were considered: (1) a slider crank attaching a

piston to a speed-controlled motor, and (2) a voltage-controlled linear actuator attached directly to

the piston. The linear actuator combination was selected since it allowed for easier control of

piston stroke (no need to change a linkage) and it did not require complex dynamic balancing as all

components were inline.

After the initial calculations of force and stroke requirements for the acoustic stimulation

experiments (provided in Appendix D), a linear piezoelectric actuator and signal generator

combination were selected. When passed through an amplifier, the output waveform from a signal

generator (Tektronix model AFG 3021B) controlled the position of the actuator, allowing precise

control of the acoustic excitation amplitude and frequency. The analysis done when sizing the

actuator assumed that the test chamber and test fluid were gas-free during experimentation;

however, in practice, removing residual gas proved more difficult to achieve than anticipated. This

meant that the test fluids were more compressible than predicted in the analysis. The result was

that the actuators sized for the task were unable to provide sufficient stroke to generate the

pressures specified in the design requirements.

A new system was then developed to compensate for the compressibility effects of the residual gas.

The new system used a larger diameter piston mounted in a hydraulic tensile testing machine which

allowed for increased stroke and piston force. The stroke and frequency of this new piston system

were again controlled by the Tektronics signal generator which was in turn controlled by an

attached PC via USB. Figure 20 below shows a schematic of the volume displaced by the piston as it

travels within the chamber. In addition, the new system had sufficient stroke capability to generate

39

both the static and acoustic components of pressure. A schematic representation of this

relationship between piston position and chamber pressure is shown in Figure 21 for clarity.

Further information about this relationship between piston stroke and chamber pressure can be

found in section 4.4.3, which deals with the commissioning of the acoustic excitation system.

Displacement

⌀ Piston

ΔVolume =
(π/4) (Piston Diameter)2(Displacement)

Piston

Test Chamber

Bolted Connection to
Tensile Testing Machine

Se
n

so
rs

Viscometer

Figure 20 - Hydraulic piston installation at base of test chamber. (O-ring seals not shown)

40

C
h

a
m

b
e

r
P

re
s
s
u

re

P
is

to
n

 P
o

s
it
io

n
 ∝

 Δ
V

o
lu

m
e

Time

Loading:

Static Pressure

Loading:

Acoustic Stimulation

Figure 21 – Plot showing the typical pressure response of a test fluid to compression by the tensile testing machine
piston.

3.3.3.8 Sample Containment

The specific geometry of the test chamber design was based largely on the mounting requirements

for the sensor and control equipment, as well as the design requirements arising from the model

reservoir assumptions. These numerous design considerations significantly narrowed down the

feasible chamber geometries such that in the end only one design was really considered. The

following CAD rendering of the chamber shows the overall shape and identifies some of the major

design features.

41

Figure 22 - Sectioned CAD rendering of experimental apparatus chamber

Along with containing the sample in the central cylindrical chamber, this design allowed for:

 Pressure containment up to 17.2 MPa (2500psi)

 The viscometer to be flange mounted and easily removed from one end of the chamber

 The acoustic stimulation source to be flange mounted opposite the viscometer and the two

separated by a large enough distance to allow for acoustic pressure waves to be

approximately planar

 Modular arrangement of the temperature and pressure sensors in both the radial and axial

directions for monitoring temperature and pressure profiles

 An insulated water jacket for circulating the heating and cooling fluids around the sample

 Installation of: a pressure relief valve, vent for priming the chamber, and valve for draining

the chamber

 Easy rotation of the chamber in a supporting frame to facilitate cleaning

Sensor Mounting
Port with NPT
Sealing Thread

Containment
Volume

Support Arms for
Mounting and

Rotating Chamber
in Frame

Flange for
mounting
viscometer

Water Jacket Flange for mounting
acoustic excitation
equipment

42

3.3.3.9 Chamber Assembly

Figure 23 shows a sectioned CAD rendering of the final experimental apparatus chamber with all

sensor equipment installed. For the sake of highlighting the mechanical system integration, sensor

electrical connections have been left out. For details about the electrical system integration, refer

to section 3.3.5. Detailed Drawings of all components, subassemblies, and the completed

experimental apparatus assembly are available in Appendix F.

Figure 23 - Sectioned CAD rendering of the final test chamber shown with all sensor equipment installed.
Note: Support frame, hydraulic connections, insulation, and electrical connections are not depicted.

Pressure Transducers

Resistance Temperature
Detectors

Hydraulic Piston

Water Jacket
Inlet/Outlet Ports

Tensile Testing Machine
Mounting Bracket

Hydraulic Piston Seals

Sample Containment
Volume

Viscometer Bulb
Fluid Bath Feedback RTD

43

3.3.4 Mechanical Design and Analyses

Several important engineering analyses were performed during the design of the experimental

apparatus. These included the structural design of the pressure vessel, thermal modeling of

chamber’s heating performance, a modal analysis of the chamber structure, and analytical

development of the constitutive relationship between piston displacement and pressure within the

chamber. These analyses are respectively presented in Appendix A, Appendix B, Appendix C, and

Appendix D.

3.3.5 System Integration and Control

The following section presents details of how the sensor and control equipment was incorporated

into the overall measurement system. Emphasis is placed on the electrical system integration

though some minor aspects of the mechanical system integration are presented as well.

3.3.5.1 System Process and Instrumentation (PI) Diagram

As specified in the design requirements for the experimental apparatus, it was necessary for the

entire system to be controlled by a PC and for all data to be logged electronically. The following

process and instrumentation diagram gives an overview of the instrumentation architecture and

data flow that enabled this. The process and instrumentation diagram presented in Figure 24

shows the communication pathways between all measurement instruments and where applicable

the communication protocol used. Control relationships between instruments are also marked,

illustrating how the PC has control of each element in the system.

44

Function

Generator

Experiment

Control/Data

Visualization

Pressure

Transducers

Test Chamber

RTDsTemperature

Controlled

Water BathStart

RS232

RS485 - MODBUS

USB

USB

DAQ

Viscometer

Water Jacket
Piston

Stroke-Controlled

Hydraulic Cylinder

Oscilloscope

V/mm
USB Control

Data

Legend:

Label

RS232

°C

Figure 24 - Process and instrumentation diagram of the experimental equipment setup

45

3.3.5.2 Electronics Enclosure

In addition to simply wiring up the equipment as shown in the process and instrumentation

diagram, further circuitry was required to ensure that all sensors received their specified supply

voltages and that all sensitive instruments were protected by fuses in the event of a power surge. It

was also necessary to protect all exposed circuits from accidental spills since they needed to

operate in close proximity to the fluid-filled test chamber. Figure 25 illustrates the layout of the

enclosure and shows sample wiring for RTDs, pressure transducers, and the viscometer.

46

120 VAC

USB to PC

NI 9205

±10V Input Module
NI 9217

RTD Input Module (x5)

Terminal Strips

Supply Voltage Signal

100 mA Fuse

Supply Voltage Signal

USB to PCRS485 to USB

Converter

National Instruments

CompactDAQ

Chassis

Signal

Pressure Transducers RTDs Viscometer

Supply Voltage

Rubber

Grommet

To PC

Water-Tight

Electronics Enclosure

DC Power Supply

22V

250 mA Fuse

Figure 25 - Schematic of the electronics enclosure showing both the wiring layout and the physical arrangement of components.

47

A water-tight electronics enclosure was designed to house all sensitive electronic equipment. The

hinged enclosure allowed easy access to the data acquisition system as well as to the sensor supply

voltage circuitry. The installation of this enclosure relative to the test chamber is shown in Figure

26 alongside a view of the completed instrumentation wiring.

(a) (b)

Figure 26 – (a) Electronics enclosure (grey) mounted to the chamber support frame. (b) Inside view of the electronics
enclosure showing the wiring when using all available chamber sensors.

3.3.5.3 Monitoring and Control Software

As shown in the PI diagram, control and data logging operations for all instruments were performed

by the PC. In order to accomplish these tasks, custom software was developed using National

Instruments LabWindows/CVI, a C-based programming environment. The three main

requirements of this software were to interface with the equipment, run the experiments, and

provide the user with near real-time operational data. The following sections present how these

main requirements were met and introduce some of the key features of the program. The high-

level flow chart presented in Figure 27 is provided as a reference for the following sections. The

main source code has been included in Appendix A for additional reference.

48

Read In

Configuration File

Setup COM Ports

Update On

Screen

Equipment

Graphics and

Readouts

Await User Input

Launch

Monitoring and

Control Program

User: Modify

Equipment

Configuration

User: Modify

COM Setup

User: Select

Experiment

Operating Mode

Manual Operation

User: Input

Automatic Test

Parameters

User: Setup and

Create Log File

Automatic

Operation

User: Start

Experiment

Automatic

Operation

Manual

Operation

Initialize All

Experimental

Equipment

Begin Logging to

Data File

Initialize Fast and

Slow Equipment

Logging Threads

Await User Input

Change Setpoint

Readouts to

Accept User Input

User: Set

Temperature

Setpoint

User: Set

Function

Generator Output

User: Mark a

Critical Logging

Point

User: Customize

On Screen

Graphs

Stop Experiment

Turn Off All

Experimental

Equipment

Terminate

Program Threads

Read In

Automatic Test

Parameters

Set and Control

to Temperature

Setpoint

Set Acoustic

Amplitude

Setpoint

Set Acoustic

Frequency

Setpoint

Acoustic

Excitation for a

Set Duration

Cease Excitation

for a Set Duration

Increment to Next

Temperature

Setpoint

Increment to Next

Amplitude

Setpoint

Increment to Next

Frequency

Setpoint

Set Function

Generator Output

Update On

Screen

Experiment

Progress Bar

Begin Graphing

and Updating

Sensor Readouts

After Completion

of All Setpoints

After Final

Frequency

Setpoint
After Final

Amplitude

Setpoint

User: End

Experimentation

Figure 27 - High-level flow chart of monitoring and control software.

49

3.3.5.3.1 Interfacing with and Logging from Equipment

As illustrated in the PI diagram, several communication protocols were used to transfer data and

commands between the PC and the various instruments. When available, built-in LabWindows/CVI

library functions were used; however, function libraries and drivers for several instruments had to

be developed separately. Table 5 below summarizes the degree of software development required

to communicate with each instrument. The final program build included all data logging and

instrument control functions for these instruments.

Table 5 - Programming requirements for each instrument

Instrument Name
Communication
Protocol Used

Drivers
(Available or
Developed)

Function Library
(Available or Developed)

Fluid Bath RS-232 Available Developed

Data Acquisition
System

USB Available Available

Function Generator USB Available Available

PACE 5000 Pressure
Controller

RS-232 Available Developed

Viscometer RS-485 MODBUS Developed Developed

In addition to simply establishing communication, the program was responsible for logging data to a

file for later post processing. Since the devices had drastically different logging rates (e.g.

viscometer @ 0.5Hz vs. data acquisition system @ 1000Hz) multi-threading was incorporated into

the program to allow logging from all instruments without the risk of memory access faults. This

allowed the program to output a single tab-delimited log file with all sensor and instrument data

from experiments.

3.3.5.3.2 Programmatic Experiment Control

50

The monitoring and control program allowed static and acoustic experiments to be performed

either manually or automatically. In manual mode, all equipment functions were directly

controllable from the GUI where as in the more commonly used automatic mode, the GUI was only

used to setup the test parameters and view operational data. After inputting the test parameters

and naming the log file, the user could initiate the automatic experiment procedure with an

onscreen control. Algorithms stepped through the parametric study according to the user’s initial

input, while separate feedback control algorithms ensured temperature and pressure setpoints

were correctly achieved. In the final build of the program, this automatic testing functionality was

successfully used to run stable multi-day experiments without the need for any user input besides

the initial configuration.

During automatic operation, safety was a primary concern since the user was not always present to

react to any risky situations that arose. Warning alarms and an emergency stop button were

incorporated into the program so that, in the unlikely event of a control algorithm failure, the

equipment and anyone nearby would be safe. In addition to these features, off-site monitoring and

control of all equipment was possible using the Windows remote desktop function complemented

by a webcam trained on the equipment. Thanks to these safety features, no accidents occurred

during software control of the experiments.

3.3.5.3.3 Operational Feedback

The third main function of the monitoring and control software was to provide the user with near

real-time information about the state of the experiment. This was accomplished through a GUI

interface. The on-screen data readouts and graphics provided the user with all operational data for

the experiment. This included current sensor data, historical sensor data, and information about

the equipment configuration. On-screen graphics depicting the equipment configuration and

relevant sensor readouts changed automatically according to the user’s selected experiment type.

Figure 28 below illustrates these and other operational data visible on the main GUI window.

51

Legend

1. Operating Mode and
Experiment Type

2. Experiment Start /
Emergency Stop Button

3. Experiment Progress Bar

4. Fluid Bath Readings

5. DAQ Sensor Positions

6. DAQ Sensor Readings

7. Sensor Selection Buttons
(Pressure or Temperature)

8. Graphic of Sensor
Configuration (Updates to
match experiment type and
sensor configuration)

9. Viscometer Readings

10. Function Generator
Readings/Setpoint

11. Historical Sensor Data
(Graphs)

12. Parameter Entry for
Automatic Experiments

13. Log File Configuration

14. DAQ Configuration

15. Equipment Configuration

16. COM Port Configuration

1

2

3

4

5 6 8 9 10

11 12 13 15 16 14

7

Figure 28 – Screenshot of the monitoring and control program GUI showing data readouts

52

3.3.6 Post-Processing Software

All data post-processing operations were performed in MATLAB using a custom m-file. The

processing algorithms written into this script were used to:

 Apply calibration coefficients to raw sensor data

 Apply density and temperature correction coefficients to raw viscosity data

 Perform data averaging operations

 Plot and save all figures

The full source code of the MATLAB script is available in Appendix A for further reference. As the

post processing requirements for each data set were dependent on the observed trends in the data,

further discussion is reserved for Chapter 5.

3.4 Design of the Acoustic Excitation Experiment

This section outlines the test conditions and basic procedures used in performing the acoustic

excitation experiments. A detailed test matrix is also presented.

3.4.1 Parametric Study

The controlled elements of any parametric study are a set of independent variables to be tested

individually and a list of control variables that are kept constant in all tests throughout the study. In

the case of this investigation, the variables presented in section 3.2.3.1 (properties of an acoustic

stimulation source) defined the independent variables to be tested. The variables presented in

section 3.2.3.2 (variables previously known to have an effect on viscosity) defined the list of

variables to be kept constant through the entire parametric study. An experiment was developed

that considered each of these variables.

53

The high level procedure for the parametric study is shown in Figure 29. As can be seen on this

flowchart, the basic premise behind the acoustic excitation experiments was to subject the test

fluids to a set of possible reservoir conditions and then step through a variety of acoustic

stimulation amplitudes and frequencies, all the while recording the resulting fluid viscosity. In this

way, the effect on viscosity of each of the control variables could be tested. The parametric

procedure was ordered such that the variables requiring the longest time to stabilize (i.e.

temperature, static pressure) were changed less frequently than those requiring little time to

stabilize (i.e. stimulation amplitude and frequency) thus minimizing the total time needed to run an

experiment. This structured approach allowed much of the experiment to be controlled

programmatically by the monitoring and control software and thus required limited supervision.

Control to

Temperature

Setpoint 1

Control to Static

Pressure

Setpoint 1

Set to

Stimulation

Amplitude 1

Fluid Test

Sample 1

Temperature

Setpoints 1,2,...,k

Static Pressure

Setpoints 1,2,...,m

Amplitude

Setpoints 1,2,...,n
Frequency

Setpoints 1,2,...,p

Stimulate at

Frequency 1

After Stimulation

Duration “t1” and

Recovery Time “t2”

Step to next

Frequency

After Frequency “p”

Step to next

Amplitude

After Amplitude “n”

Step to next Static

Pressure

After Static

Pressure “m”

Step to next

Temperature

Fluid Test

Samples 1,2,...,f

After Temperature “k”

Test Complete

Insert Next Test Sample

Measure

Dependent

Variables

Figure 29 - High level procedure for the acoustic excitation parametric study

Figure 30 is a simulated time trace from a typical acoustic excitation experiment. This snapshot of

the experiment illustrates how some of the time dependent elements are controlled in the

experiment procedure. In the specific cases of thixotropy and stimulation duration, the experiment

does not progress to the next setpoints until the viscosity has stabilized. For stimulation duration,

54

stimulation is continued until viscosity reaches a stable value. For thixotropy, the experiment does

not progress to the next setpoint until the fluid returns to its original viscosity (i.e., that measured

prior to acoustic stimulation).

C
h

a
m

b
e

r
P

re
s
s
u

re

V
is

c
o

s
it
y

Time

Acoustic Stimulation:

Amplitude 1

Frequency 1

Acoustic Stimulation:

Amplitude 1

Frequency 2

Thixotropic

Recovery

Thixotropic

Recovery

Static

Pressure

Setpoint

Figure 30 - Simulated result of an acoustic excitation procedure showing two frequency setpoints.

3.4.2 Test Matrix

Table 6 is a test matrix detailing the acoustic excitation parametric study. Each row represents one

fluid to be tested and each column represents the variable range for a controlled variable. The user

may note this is the first mention of specific acoustic excitation amplitude and frequency setpoints.

Since the selection of these two ranges depended on the actual performance of the acoustic

excitation system, the explanation for these ranges is presented at the end of Chapter 4 which deals

with the commissioning of the apparatus.

55

Table 6 - Test matrix for acoustic excitation experiments

Test Fluid Temperatures Static Pressure
Acoustic Excitation

Amplitudes

Acoustic
Excitation

Frequencies

N2500 20°C
3.45 MPa (500

psi)

0.69, 1.38, 2.76
MPa (100, 200, 400

psi)
5, 10, 15, 20 Hz

Bentonite/Water
[13% mass]

20°C
3.45 MPa (500

psi)

0.69, 1.38, 2.76
MPa (100, 200, 400

psi)
5, 10, 15, 20 Hz

Cornstarch/Water
[55% mass] (*)

20°C
3.45 MPa (500

psi)

0.69, 1.38, 2.76
MPa (100, 200, 400

psi)
5, 10, 15, 20 Hz

Bitumen 80°C
3.45 MPa (500

psi)

0.69, 1.38, 2.76
MPa (100, 200, 400

psi)
5, 10, 15, 20 Hz

Athabasca Oil
Sand (*)

80°C
3.45 MPa (500

psi)

0.69, 1.38, 2.76
MPa (100, 200, 400

psi)
5, 10, 15, 20 Hz

(*) Ultimately, these fluids were not tested. See Section “5.5 Cornstarch and Oil Sand” for the

reasoning behind this.

3.5 Summary

This chapter outlined the development of the research methodology from experiment conception

to the design of the testing apparatus and experimental procedures. Commissioning and calibration

of the aforementioned equipment and test procedures is treated in Chapter 4.

56

Chapter 4 System Commissioning and Calibration

4.1 Introduction

This chapter presents the results of experimentation performed during the commissioning and

calibration of the experimental apparatus as well as preliminary experimentation done to

characterize the rheological behavior of the test fluids. The end of this chapter summarizes the

actual capabilities of the measurement apparatus and presents the test matrix used in the

parametric acoustic experiments.

4.2 Fluid Characterization

The main purpose of the acoustic excitation experiments was to observe changes in viscosity caused

by an imposed acoustic field. Since non-Newtonian fluids exhibit changes in viscosity with imposed

shear fields, one point of interest for this study was to determine whether or not any observed

changes mimicked the non-Newtonian behavior of the test fluids under shear loading. As a

preliminary experiment, data was collected about the rheological behavior of the test fluids.

4.2.1 Rheology Experiments

One sample of each test fluid was placed into a Couette rheometer and programmatically stepped

through a range of rotational shear rates. The measured torque was analyzed by the device and

used to calculate the corresponding shear rate dependent viscosity. Since comparisons between

the non-Newtonian viscous behaviour and the acoustic excitation behaviour were intended to be

mainly qualitative, the rheology experiments were not exhaustive parametric studies. Rather, each

sample was tested over a large enough range of shear rates to observe the onset of any non-

Newtonian behaviour.

Figure 31 illustrates the test procedure that was followed during these experiments. Beginning at a

low rotational speed, the rheometer spindle was rotated in the test fluid for a sufficient amount of

57

time to allow the sheared flow to develop. At this point, a series of torque measurements were

taken at evenly spaced intervals and converted to viscosity values by the rheometer software.

Upon collection of this data the spindle rotational speed was increased and the viscosity

measurement repeated until the infinite shear viscosity was detected.

S
h

e
a

r
R

a
te

 (
∝

 S
p

in
d

le
 S

p
e

e
d
)

V
is

c
o

s
it
y
 (
∝

 T
o

rq
u

e
)

Time

Torque

Measurements

(@ Zero Shear)

Torque

Measurements

Torque

Measurements

Torque

Measurements

Torque

Measurements

(@ Infinite Shear)

Infinite Shear

Viscosity

Terminate

Experiment

Figure 31 - Time series plot of a Couette rheometer experiment procedure for an example pseudoplastic fluid.

4.2.2 Results

Figure 32 shows a sample of the data output from a Couette rheometer experiment performed on a

bentonite slurry. As evidenced by the decrease in viscosity with increased shear rate, this bentonite

slurry exhibits pseudoplastic behaviour. The constant viscosity data points at the highest shear

rates indicate that the infinite shear viscosity was reached. Table 7 summarizes the qualitative

findings of the characterization experiments for all other test fluids.

58

Figure 32 – Shear-rate dependent viscosity result showing pseudoplastic behaviour in a bentonite slurry (17% mass
concentration).

Table 7 - Summarized results of the fluid characterization experiments.

Test Fluid
Nature of Non-

Newtonian Behaviour

N2500 Pseudoplastic

Bentonite Pseudoplastic

Cornstarch Dilatant

Bitumen Newtonian

Oil Sand n/a

Infinite Shear Viscosity

Pseudoplastic Viscosity Drop
with Increased Shear Rate

Low-shear Viscosity

59

Bitumen was tested at approximately 80°C in order to bring the viscosity values within the

measurement range of the rheometer. A vane rheometer attachment was not available for

characterizing the coarse oil sand. As a result, the shear rate dependent viscous behaviour of oil

sand at atmospheric pressure could not be accurately characterized using the available equipment.

4.3 Sensor Calibration

4.3.1 Temperature Sensor Calibration

The RTDs were calibrated in the Cole-Parmer fluid bath using the onboard reservoir temperature

probe (factory calibrated) as the standard to compare against. Sensors were suspended in the

turbulent reservoir and monitored using National Instruments MAX calibration software. The

temperature in the reservoir was increased from 10°C to 90°C in 10°C increments and temperature

readings (actual temperature vs measured temperature) were monitored by the calibration

software.

Slope and offset calibration coefficients were computed by the MAX software. During

experimentation these calibration coefficients were read in by the MATLAB post processing

software and applied to all raw sensor data prior to plotting.

4.3.2 Pressure Sensor Calibration

Pressure sensors were calibrated by connecting them to the factory calibrated PACE 5000 pressure

controller. In a similar procedure to that performed for the RTDs, the PACE 5000 exposed the

sensors to Nitrogen pressures from 0 psi to 1400 psi in 200 psi increments while readings of

measured vs actual pressure were monitored by the National Instruments MAX calibration

software. Again, slope and offset calibration coefficients were computed by MAX for use in the

MATLAB post processing software.

60

4.3.3 Viscometer Calibration

The viscometer arrived from the manufacturer factory calibrated, however, since its accuracy was

of prime importance to this research study it was decided that the factory calibration would be

verified in the lab. A NIST traceable viscosity calibration fluid (N2500) was ordered that was highly

sensitive to changes in temperature. Between 20°C and 80°C the viscosity of this fluid changed

enough to cover approximately 70% of the measurement range of the viscometer giving a wide

range of temperature versus viscosity points to calibrate the viscometer against.

The viscometer was installed in the test chamber and the chamber filled with N2500. Using the

monitoring and control software written for the apparatus, a test procedure was written that

simultaneously controlled the temperature setpoint of the calibration fluid within 20°C and 80°C

and took measurements from the calibrated RTDs and the viscometer. In addition, the static

pressure in the chamber was controlled to observe its effect on the viscosity of the calibration fluid

although no NIST data was available to verify the pressure dependence against.

The resulting viscosity versus temperature and pressure data was processed and plotted in custom

Matlab post processing software and is shown in Figure 33. The plot shows viscosity measurements

for four temperature series plotted against a range of test pressures. The stars indicate the NIST

traceable viscosity values for each temperature setpoint measured at zero gauge pressure. The

wide spacing between these points is indicative of the high sensitivity of viscosity to temperature

(changing 20 times in magnitude over a 60°C span). As can be seen in the plot, there was close

agreement between the actual and measured viscosities. The maximum measurement error of

7.9% occurred at 80°C while the minimum error of 2.7% occurred at 20°C. Considering the

sensitivity of N2500 viscosity to temperature, these relatively small errors give a high degree of

confidence in both the factory calibration of the viscometer and in the test chamber temperature

control system. It should be noted that although the commissioning of the temperature control

system is described later in this text, it was performed prior to the viscometer calibration

experiments.

61

Figure 33 – Plot of NIST traceable viscosity values and viscosity calibration data for N2500.

4.4 System Commissioning

4.4.1 Temperature Control System Commissioning

The temperature control system was the first system in the experimental apparatus to be

commissioned. Each thermal commissioning trial involved filling the chamber up with a test fluid

and then stepping up the setpoint temperature from 20°C to 80°C in set increments allowing the

system to arrive at steady state after each setpoint change. RTDs were positioned at various radial

and axial positions in the chamber and data was logged continuously. Several thermal

performance metrics were deduced from this data including heating time between setpoints, radial

62

and axial temperature gradients, and temperature stability. These are defined below followed by a

sample data set from a commissioning experiment.

4.4.1.1 Heating Time

During the equipment design, heating times were roughly estimated using a radial heat transfer

model so as to compare different possible chamber geometries against one another from a thermal

standpoint. This is briefly introduced in Appendix B. The thermal commissioning trials provided a

measurement of actual heating times. These more accurate values allowed more precise

calculation of the estimated duration of later multi-temperature setpoint experiments. When

analyzing the data from the thermal commissioning trials, rise time was used to describe the

approximate heating time between setpoints.

4.4.1.2 Temperature Gradient

The viscometer needed to be exposed to a fluid of homogeneous temperature in order to yield the

most accurate viscosity measurements. For this reason, it was important to understand whether

any axial or radial temperature gradients existed in the chamber region surrounding the viscometer

bulb. Logging from RTDs at a variety of known radial and axial positions during the commissioning

trials allowed the magnitude of both gradients to be observed during transient and steady state

operation of the device. When analyzing the commissioning trial data, four RTDs were used to

observe the radial temperature gradient and eight RTDs for the axial gradient.

4.4.1.3 Temperature Stability

Two of the desired outcomes from the acoustic excitation experiments were the observance of any

thixotropic effects and the observance of whether sustained acoustic excitation had any effect on

fluid viscosity. Both observations were time dependent and thus required that viscosity

measurements be taken over prolonged periods of time. During these periods, temperature

63

stability was critical since changes in viscosity due to temperature fluctuations could lead to a

misinterpretation of the time dependent data. Realizing that the test fluids were unlikely to reach

perfect steady-state temperatures in the amount of time available for each experiment, it was

important to understand the degree of temperature fluctuation that would occur at each setpoint.

Observing that the temperature control system was underdamped, maximum overshoot and speed

of attenuation were used to gauge the relative temperature stability at each setpoint.

4.4.1.4 Commissioning Data

Thermal commissioning trials were performed on a variety of test fluids under a wide range of

temperature setpoints and increments. Since this commissioning performance data was primarily

used for internal experiment planning purposes and for programmatic control of experiment

progression, the full set of plots is not presented here. The previous discussion is instead meant to

present some of the considerations that went into mitigating potential errors in viscosity

measurement that may have otherwise been introduced by uncertainty in test fluid temperature.

4.4.2 Pressure Vessel Commissioning

Since the test chamber had a total volume of less than 42.5 litres and was being used for

experiments conducted in a research facility, as per section 2(2)(n) of the Alberta Pressure

Equipment Exemption Order (Alberta Queen's Printer, 2006), it was exempt from the Alberta

Pressure Equipment Safety Regulation. As such, it was not tested by a provincial safety inspector

prior to use in the lab. In lieu of this inspection, commissioning tests were performed to assess the

safety of the chamber under pressure. Three types of tests were performed: static and dynamic

testing of the chamber under pressure and impulse testing of the pressure relief valve.

4.4.2.1 Quasi-Static Pressure Testing

The first commissioning tests assessed the chamber’s ability to both withstand and maintain

internal pressure. In order to avoid the risk of an explosion should the chamber undergo a

64

structural failure, the volume was pressurized with liquid rather than gas. Tap water was used for

this purpose.

With all sensors and flanges installed in the chamber and the pressure relief valve removed, the

volume was filled with tap water at atmospheric pressure. Once filled, a small piston was manually

screwed into one of the end flanges, entering the chamber volume and thereby compressing the

internal fluid. The resulting internal pressure was carefully monitored using the data acquisition

program to avoid over-pressurization. Gauge pressure was gradually increased from atmospheric

pressure to 11.03 MPa (1600 psi) (slightly above the dynamic working pressure of the chamber)

stopping periodically to monitor for pressure leaks.

This testing was repeated when leaks were discovered around some of the peripheral sensors.

After re-sealing the sensors, the chamber was found to be able to withstand and maintain pressure

over the full range of static pressures.

4.4.2.2 Pressure Relief Valve Testing

During the dynamic pressure commissioning in the tensile testing machine, it was easy to over-

pressurize the chamber. Only a small error in the displacement of the hydraulic piston was required

to generate excessive internal pressures. A pressure relief valve was installed to avoid a potential

accident. The relief valve was factory calibrated to vent at pressures above 10.3 MPa (1500psi);

however, no information was available on its dynamic performance or on its ability to vent high

viscosity fluids. To evaluate these and to verify the factory calibration, a short series of over-

pressurization tests was performed using bentonite slurry (17% mass concentration).

Each experiment involved priming the test chamber with bentonite slurry and then raising the

hydraulic piston into the chamber volume until the pressure relief valve was triggered. Three

experiments were performed. The first two involved raising the internal pressure very slowly to

verify that the relief valve triggered at approximately 10.3 MPa (1500 psi). The trigger events

65

observed in both of these trials indicated that the factory calibration was accurate, and gave a basic

indication that the valve was not highly susceptible to fouling by high viscosity fluids. The third trial

involved a step increase in pressure from atmospheric pressure to 11.0 MPa (1600 psi). The

pressure relief triggered and oscilloscope measurements indicated that the internal pressure never

reached 11.03MPa (1600psi). With the success of these trials, it was deemed safe to continue with

the dynamic pressure commissioning.

4.4.2.3 Dynamic Pressure Testing

A good deal of analysis was performed during the chamber design to determine resonant

frequencies (see Appendix C). The analysis indicated three resonant frequencies in the radial

direction (7, 13, and 22 GHz) and two in the longitudinal direction (23, 48 MHz). Although these

frequencies were many orders of magnitude higher than the desired acoustic stimulation

frequencies, basic resonance testing was carried out on the system to detect any possible resonant

behavior in the operational range.

 A series of frequency sweeps were performed from 1-60Hz @ ±0.69 MPa (±100 psi) and the

researcher was present to observe/hear any resulting resonant behavior. Over this frequency

range, there was no audible or visual indication of excessive vibration. The risk of a structural

failure due to resonance was deemed minimal and further tests using accelerometers were not

conducted.

4.4.3 Acoustic Excitation System Commissioning

It was important to have an accurate understanding of what dynamic pressure amplitudes and

frequencies could be generated within the test chamber. This final set of commissioning trials

characterized this dynamic performance of the acoustic excitation system and yielded the variable

limits used in the acoustic excitation parametric study. Two types of commissioning experiments

were required to gain this understanding of the system behaviour: (1) quasi-static compressibility

experiments for determining the precise relationship between hydraulic piston position and

66

chamber pressure; and (2) dynamic compression experiments for determining the frequency

response of the tensile testing machine hydraulics.

4.4.3.1 Quasi-Static Compressibility Experiments

The quasi-static compressibility experiments provided the data needed to check the previously

derived constitutive relationship between hydraulic piston stroke and internal chamber pressure.

The procedure was similar to one performed in the pressure vessel commissioning. The chamber

was primed with a test fluid and the hydraulic piston was then slowly raised into the chamber

volume, compressing the test fluid and pressurizing the chamber up to 9.65MPa (1400psi). Using a

digital oscilloscope, the piston position data was logged from the tensile testing machine’s linearly

variable differential transformer (LVDT) alongside the pressure data from one of the chamber

pressure sensors. The resulting oscilloscope trace from one trial is shown in Figure 34. The orange

curve (upper) represents the internal chamber pressure while the blue curve (lower) represents the

piston displacement. As can be seen by the phase lag between the two curves, no appreciable

pressurization occurs until the piston has moved approximately 50% of its total displacement.

Figure 34 - Oscilloscope trace illustrating non-linear pressurization due to residual gas in the test chamber

As seen in the figure, the relationship between internal pressure and piston position was highly

non-linear at the onset of pressurization and only became linear at higher internal pressures.

67

Subsequent quasi-static compressibility experiments performed on other test fluids showed this

same non-linear behavior. This was contrary to the linear constitutive relationship developed in the

engineering analysis of fluid compressibility. Further reading on the topic of fluid compressibility

(McCain, 1990) revealed that this behavior was likely the result of small amounts of residual gas left

in the test chamber, gas that the engineering analysis had assumed was completely removed. The

cause is likely that during the initial piston compression (at low pressures), residual gas was

compressed and forced back into solution so it was not until after this occurred that compression of

the test fluid became linear with piston position. Figure 35 shows this graphically by overlaying an

ideal time trace of a piston compression and the resulting linear and non-linear pressurizations

within the test chamber.

C
h

a
m

b
e

r
P

re
s
s
u

re

P
is

to
n

 P
o

s
it
io

n
 ∝

 Δ
V

o
lu

m
e

Time

Non-Linear

Pressurization

Linear

Pressurization

Residual

Gas

Gas in

Solution

Figure 35 – Plot of piston position against chamber pressure showing linear and non-linear pressurization regions and
state of residual gas.

In all test fluids, the linear pressurization region began at pressures near 1.38MPa (200psi) but the

acoustic excitation experiments were designed to be performed at estimated reservoir pressures

68

[i.e. 3.45 MPa (500 psi)] which meant that during experimentation, the test fluids were in the region

of linear compressibility. The data collected during these quasi-static compressibility experiments

was more accurate for predicting/controlling the pressure amplitude than the analytically derived

constitutive relationship and so the empirical relationships were used.

4.4.3.2 Dynamic Compressibility Experiments

The constitutive relationships developed from the quasi-static compressibility data allowed precise

prediction of the internal chamber pressure; however, information on the frequency response of

the hydraulics was still needed to fully understand the dynamic performance of the acoustic

excitation system. Pressurization frequency was dependent on piston velocity. The tensile testing

machine hydraulics limited which amplitude/frequency pairs were possible since they governed the

maximum velocity of the piston at any given stroke length. The aim of the dynamic compressibility

experiments was thus to determine the maximum pressurization frequencies achievable at a given

set of acoustic pressure amplitudes.

Acoustic pressure amplitudes of ±0.69, 1.38, 2.76 MPa (±100, 200, and 400 psi) were selected for

the dynamic testing. Each test consisted of priming the test chamber with N2500 (highly

compressible and thus the probable worst case), raising the internal pressure up to 3.45 MPa

(500psi) then cycling the piston in a sinusoidal motion to generate the target acoustic excitation

amplitude. Piston frequency was gradually increased using the function generator. The chamber

pressure and piston LVDT output were monitored with a digital oscilloscope.

The tensile testing machine was wired such that it would sacrifice piston stroke in favor of

maintaining the target pressurization frequency. In this configuration, failure of the hydraulic

system to produce a desired pressurization frequency/amplitude combination was easily

identifiable by a drop in pressure amplitude and piston stroke. Figure 36 illustrates such a scenario

for water pressurized at 3.45 MPa (500 psi) static pressure and cycled at ±1.38 MPa (200 psi)

acoustic pressure. The oscilloscope trace shows the chamber pressure observed over an upward

and then downward frequency sweep. As evidenced by the degraded sine wave at high

69

frequencies, the hydraulics were unable to accurately sustain this amplitude/frequency

combination. By performing the tests at each of the acoustic pressure setpoints and observing the

frequency which triggered the onset of a drop in amplitude, the frequency response of the acoustic

excitation system was characterized. The resulting amplitude/frequency data are summarized in

Table 8.

Figure 36 – Zoomed in oscilloscope trace of a dynamic pressurization experiment illustrating the pressure drop seen at
high pressurization frequencies

Table 8 - Maximum pressurization frequencies/amplitudes achievable with N2500

Acoustic Excitation
Amplitude
(MPa) [psi]

±0.69 [100] ±1.38 [200] ±2.76 [400]

Drop-off Frequency
(Hz)

115 55 20

Acoustic pressure amplitude drop
observed at highest frequencies

Approximately constant acoustic pressure
amplitude observed at lower frequencies

70

As acoustic pressure amplitude increased, the maximum achievable pressurization frequency

decreased. This frequency response data was used to determine the frequency setpoints in the

acoustic excitation parametric study. In order to test each acoustic pressure amplitude at the same

frequencies, the frequency setpoints in the parametric study were capped at the lowest achievable

frequency: 20Hz. The amplitude and frequency ranges used in the test matrix were therefore set at

±0.69, 1.38, 2.76 MPa (100, 200, 400 psi) and 5, 10, 15, 20 Hz respectively.

4.5 Summary

The experiments performed in the commissioning and calibration of the experimental equipment

were presented in this chapter. Calibration of the temperature, pressure, and viscosity sensors was

performed and analysis of the commissioning data showed that the vessel was capable of safely

controlling and maintaining the pressures and temperatures called for in the model reservoir

assumptions. In addition, commissioning trials of the acoustic excitation system indicated that the

apparatus was capable of subjecting fluid samples to sinusoidal pressure fluctuations of up to 2.76

MPa (400 psi) at frequencies of up to 20Hz.

71

Chapter 5 Acoustic Excitation Experiments

5.1 Introduction

Chapter 5 presents the results of the acoustic excitation experiments along with a discussion of

potential industrial implications of the findings. The discussion is divided into sections for each test

fluid and, where applicable, subsections for each of the two types of data plots: time series plots

and amplitude frequency plots. The following discussion will aid the reader in the interpretation of

these data plots.

5.1.1 Time Series Plots

Time series plots are used in this chapter to illustrate the time-dependent viscous behavior of test

fluids. These include any changes in viscosity that occur during acoustic excitation as well as any

thixotropic or rheopectic behaviors that occur after excitation has ceased. All such time series plots

are similar to one another in that they each present viscosity on the vertical axis against time on the

horizontal axis. Figure 37 is an example of such a plot illustrating time dependent viscous behavior

of a fluid which undergoes a viscosity reduction during excitation. The labels on this figure indicate

the period where acoustic excitation takes place as well as identify the “baseline viscosity”,

“stimulated viscosity”, and “recovered viscosity”, terms used later on in the discussion of results to

describe the steady state viscosity readings taken at various points during an experiment. As is

evident from this figure, the speed of response to the onset of acoustic excitation and the speed of

viscous recovery can also be gauged from a time series plot.

While amplitude frequency plots are presented for each of the test fluids, time series plots are only

presented where measurably significant viscosity changes are detected so that a presentation of

the time dependent viscous behavior would complement the discussion.

72

V
is

c
o

s
it
y

Time

Acoustic

Stimulation

Baseline

Viscosity

Stimulated

Viscosity

Recovered

Viscosity

Figure 37 - Schematic representation of time dependent viscous behaviour illustrating the ‘baseline’, ‘stimulated’, and
‘recovered’ viscosities

5.1.2 Amplitude Frequency Plots

Much information can be obtained from time series plots however they are ineffective at

illustrating the dependence of viscosity on acoustic excitation parameters. In a potential reservoir

production strategy employing acoustic excitation over a large volume for long periods of time, the

asymptotic stimulated viscosity would be of more interest than the transient viscous behavior. A

different data plotting scheme is more effective for quantifying such data. ‘Amplitude frequency

plots’, as they are referred to in this document, use averaged data taken from time series plots to

illustrate the effects of acoustic excitation amplitude and frequency on the stimulated viscosity.

Figure 38 illustrates the amplitude frequency plotting strategy. Each colored data series represents

a given acoustic excitation amplitude and each point on the data series represents the steady state

viscosity of the fluid measured at a given acoustic excitation frequency. Contrary to time series

73

plots where stimulated viscosity is shown more qualitatively, amplitude frequency plots show

calculated quantitative values for stimulated viscosity. Each point is the result of averaging the final

portion of viscosity data collected at the asymptotic stimulated value. These data averaging

operations (performed in MATLAB) serve the function of removing the slight viscosity oscillations

caused by minor temperature fluctuations centered about the setpoint temperature. By averaging

over several temperature fluctuation cycles, this allows for the calculation of single point stimulated

viscosity values at the setpoint temperatures.

The solid horizontal black line on the plot indicates the baseline viscosity of the fluid (i.e., under no

acoustic excitation) and error bars at ±10% of the measured value have been calculated and plotted

for each data point. This 10% error is meant to encompass errors in viscosity measurement

(maximum of 9% as seen on Figure 33) and in temperature measurement (estimated at 1% since

sensors were calibrated). This plotting strategy reveals the significance of acoustic excitation

amplitude and frequency on the viscosity of the test fluids. A data point with error bars overlapping

the solid horizontal line indicates that at that particular amplitude and frequency, acoustic

excitation does not have a measurably significant effect on the viscosity of the fluid being tested

since any deviation from the baseline viscosity could be due to temperature or viscosity

measurement error. By the same logic, a data point with error bars lying outside the solid

horizontal line indicates a measurably significant effect of acoustic excitation on the stimulated

viscosity of the fluid. Examples of both such observations (green series – significant, blue series –

insignificant) are illustrated in Figure 38.

74

V
is

c
o

s
it
y
 [
c
P

]

Frequency [Hz]

Significant

Viscosity

Reduction

Significant

Viscosity

Increase

Insignificant

Change in

Viscosity

Amplitude Series 1

Amplitude Series 2

Amplitude Series 3

Viscosity vs Stimulation Frequency and Amplitude

(Fluid Name – Temperature Setpoint °C)

Figure 38 – Sample amplitude frequency plot depicting measurably significant (green) and insignificant (blue) results of
an acoustic excitation experiment

In addition to providing insights as to the effect of acoustic excitation on viscosity, this plotting style

facilitates future economic analyses of viscosity dependent production technologies. If the

viscosity-temperature relationship is well characterized for a fluid, one could use an amplitude

frequency plot to estimate the acoustic excitation amplitude and frequency combination required

to generate the equivalent change in viscosity. Provided information is available on both the cost of

heating the fluid and on the cost of acoustically exciting the fluid to its stimulated viscosity, a cost

comparison between the two methods of viscosity modification could be made to determine which

viscosity modification technique is most cost effective. This analysis was outside of the scope of the

current study.

75

5.2 N2500 Calibration Standard

5.2.1 Amplitude/Frequency Plot

The amplitude frequency plot for the N2500 viscosity calibration standard is shown in Figure 39. As

indicated by the close proximity of the horizontal dashed black lines to the solid black line, there is a

relatively small change in the viscosity of N2500 over a 0.25°C temperature range. Despite this

cramping of the threshold lines one can see that for all acoustic excitation amplitudes and

frequencies tested, the viscosity points overlapped or barely dipped below the lower threshold line.

This indicated that at the amplitudes and frequencies tested, acoustic excitation had a negligible

effect on the viscosity of N2500.

Figure 39 - Amplitude frequency plot for N2500 calibration standard

76

5.3 Bentonite

5.3.1 Amplitude/Frequency Plot

The amplitude frequency plot for a 13% mass concentration of bentonite is shown in Figure 40.

Similar to the plot for N2500, the ±0.25°C threshold lines are in very close proximity to the solid

black line and in this case are barely distinguishable. Contrary to the case for N2500 however, the

data series show that acoustic excitation causes a significant change in the viscosity of this

bentonite mixture.

Figure 40 - Amplitude frequency plot for bentonite (13% mass concentration)

77

The three acoustic excitation amplitude series are well below the lower threshold line which

indicates measurably significant viscosity reductions at all acoustic excitation amplitudes. There is a

positive correlation between the acoustic excitation amplitude and the magnitude of the viscosity

reduction as indicated by the separation between the increasing amplitude series.

The lowest acoustic excitation amplitude series (±100psi - blue data points) showed the smallest

viscosity reductions, approximately 5% from ~1220cP down to ~1150cP. Similarly, the largest

amplitude series (±400psi – green data points) showed the largest viscosity reduction,

approximately 75% from ~1220cP down to ~300cP. The middle amplitude series (±200 psi – red

data points) showed a viscosity reduction near in magnitude to the ±400psi series indicating a

possible non-linear correlation between the magnitude of the acoustic excitation amplitude and the

magnitude of the viscosity reduction. This non-linearity also indicated the possibility that there may

be a maximum possible (i.e. asymptotic) reduction in viscosity with increasing acoustic excitation

amplitude. A broader range of acoustic excitation amplitude experiments would be required to

increase the resolution and make this determination for certain.

The fact that each amplitude series is approximately horizontal indicates that for the range of

frequencies tested there is minimal effect if any of acoustic excitation frequency on viscosity. There

is however very likely a minimum acoustic excitation frequency below which viscosity is unaffected

by excitation. The reasoning behind this rests on the fact that at some very low frequency, the

nature of stimulation ceases to be acoustic and is instead quasi-static pressurization. At this point,

it is expected that the stimulated viscosity would be the same as the baseline viscosity. The exact

frequency where this occurs could be determined by repeating the acoustic excitation experiment

at a number of frequencies approaching 0Hz.

5.3.2 Time Series Plots

Figure 41 is a snapshot of the acoustic excitation experiment performed at ±400psi at 5 Hz using a

bentonite sample. The shape of this curve was common to all other experiments performed on

78

bentonite at different stimulation amplitudes and frequencies, the only difference being the

magnitude of the viscosity reduction. The onset and termination of acoustic excitation are marked

on the figure alongside a number of other points of interest including the baseline, stimulated, and

recovered viscosities.

Figure 41 - Time series plot of a bentonite sample stimulated at ±400 psi at 5Hz exhibiting changes in viscosity

As can be seen by the steep negative slope of the viscosity curve following the onset of stimulation,

the initial viscosity reduction occurred rapidly. For the curve presented above this amounted to a

27% reduction in viscosity in 82 seconds. Further viscosity reduction occurred at a slower rate until

the stimulated viscosity was eventually reached just short of 2 hours into the stimulation cycle.

Viscosity curves at other stimulation amplitudes and frequencies showed this same behaviour with

79

stimulation at ±100psi exhibiting slightly slower initial rates of viscosity reduction (approximately

15% drops in 120 seconds) than the ±200 and ±400psi curves which were similar to one another.

Figure 42 is a time series plot for the ±200 psi experiment (red curve) of Figure 40. As can be seen

on this graph, the viscosity of the test sample is reduced to the minimum value of stimulated

viscosity shortly after the onset of excitation at the different frequencies. The 10, 15, and 20 Hz

tests show almost complete agreement in their behavior whilst the 5Hz test follows a less steep

curve and plateaus at a slightly higher minimum viscosity. It is postulated that the discrepancy in

curve shapes might be caused by the rate of energy input to the system, which is a function of the

frequency. The lower left portion of the graph does indicate that the 20 Hz test reached the

stimulated viscosity slightly before the 15 Hz test which in turn reached its stimulated viscosity

slightly before the 10 Hz test. No theories are put forward as to why the 5 Hz test plateau was

higher than the others.

80

Figure 42 - Time series plots of a bentonite sample stimulated at ±200 psi at 5, 10, 15, and 20 Hz

The final viscosity drop identified on Figure 41 was present in all bentonite trials and occurred

immediately after excitation was ceased. It was suggested that this final drop might be caused by

the piston returning to its neutral position upon termination of the acoustic excitation cycle. Figure

44 shows an example of the viscosity, temperature, and pressure within the cylinder in the brief

period following an acoustic excitation cycle. As expected, there is a marked decrease in chamber

pressure as the piston is withdrawn to its neutral position which in turn results in a sharp drop in

viscosity.

81

Drop Time

Viscosity

Drop

Figure 43 - Enlarged graph of a final viscosity drop illustrating how viscosity drop magnitude and drop time are
measured

82

Figure 44 - Plot showing the magnitude and duration of a viscosity and pressure drop observed immediately following
the termination of stimulation in a bentonite slurry (±200 psi @ 15Hz).

Another test was performed on a bentonite sample, this time designed to ascertain whether the

primary viscosity drops were absolute or relative in magnitude (i.e. whether or not the viscosity at

the onset of stimulation affected the magnitude of the stimulated viscosity). A 10% mass

concentration bentonite sample was stimulated at ±400 psi at 5 Hz until the stimulated viscosity

could be estimated. Stimulation was then stopped for a brief time allowing only a partial viscous

recovery to take place before stimulation was restarted. This process was repeated three times and

yielded the results shown in Figure 45.

41psi

72cP

1.8°C

Stimulation
Terminated

Acoustic
Stimulation

83

Figure 45 - Time series plot of a bentonite sample illustrating how viscosity drops to a minimum value irrespective of
whether recovery is allowed to complete

The blue line represents the viscosity logged over the duration of the experiment and the red line is

included to help illustrate the asymptotic approach to a final stimulated viscosity value. The start

and termination of each stimulation cycle are marked on the figure. The reader may also observe

how the shape of each stimulation cycle and the final viscosity drops observed upon termination of

stimulation are similar to those previously discussed in Figure 41.

As can be seen in Figure 45, stimulating the bentonite sample before viscous recovery could

complete had no effect on the magnitude of the stimulated viscosity. Each stimulation period

approached the same asymptotic stimulated viscosity value. It can therefore be concluded that

84

there is a minimum stimulated viscosity magnitude that is reached over time regardless of the

stimulation history of the bentonite.

It was desired to better understand the mechanism by which changes in bentonite viscosity took

place. It had been observed that the consistency of freshly mixed bentonite samples changed

dramatically over the first 24 hours, becoming much more gelatinous over time, in a similar way to

how stimulated samples underwent thixotropic recovery. It was therefore postulated that the

observed changes in viscosity measured during the acoustic excitation experiments may have been

caused by a disintegration of the gel structure during stimulation. A thorough investigation of the

bentonite gel structure during and after stimulation was beyond the scope of this study however a

comparison of thixotropic recovery data and viscosity data from a newly mixed sample was done as

an initial test of this theory.

Figure 46 plots two viscosity series on the same time scale. One is the measured viscosity of a

bentonite sample immediately following the cessation of stimulation at ±400 psi at 5 Hz. The other

is the viscosity of a bentonite sample of a slightly higher mass concentration (16% vs 13%) 10

minutes after it was first mixed. The temperature of both samples was maintained at 20°C. As the

figure shows, the viscosity of both samples is almost the same at the onset of the measurements.

The viscosity of both samples then gradually increased over time, eventually reaching their

respective asymptotic viscosity values. An ideal comparison would have used samples of exactly

the same mass concentration however only this data was available at the time of writing. Despite

this fact, it is obvious that the curves have a similar shape. If the newly mixed sample were of a

lower mass concentration (i.e. 13%), it is conceivable that its viscosity curve would be closer to

overlapping that of the recently stimulated sample since it would approach a lower asymptotic

viscosity value. Further experimentation observing such conditions is therefore warranted in a

thorough investigation of the mechanism of viscosity change in bentonite.

85

Figure 46 - Graph showing the thixotropic recovery of a recently stimulated bentonite sample against the viscosity of a
newly mixed bentonite sample

It is worth noting that the unstimulated viscosity values measured for bentonite using the test

chamber were quite different from those quoted in industry at similar temperatures and

concentration. Perfect data comparisons were not available but in one rough comparison, a 10%

concentration sample at 20°C was estimated to be around 50cP in industry whilst a 13%

concentration measured 1200cP in the test chamber. As Figure 32 showed, measurements taken

over a wide range of shear rates yielded a viscosity range stretching several orders of magnitude so

it is hypothesized that this difference may be the result of measuring at different shear rates (lower

shear rate in the test chamber). More details of the industry experiments would be required to

confirm this.

86

5.4 Bitumen

5.4.1 Amplitude/Frequency Plot

The amplitude frequency plot for bitumen is shown in Figure 47. There is a relatively large change

in the viscosity of bitumen over 0.25°C as indicated by the distance between the horizontal dashed

black line and the solid black line. Similar to the case for the N2500 calibration standard one can

see that for all acoustic excitation amplitudes and frequencies tested, the viscosity points were

located within the measurably insignificant region between the lower threshold line and the

baseline. This indicated that at the amplitudes and frequencies tested, acoustic excitation had a

negligible effect on the viscosity of bitumen.

Figure 47 - Amplitude frequency plot for bitumen at 80°C

87

This result is discouraging for potential in-situ production strategies since no significant change in

bitumen viscosity was detected. Further testing at a wide range of amplitudes and frequencies

would be required to make a concrete statement on the potential usefulness of acoustic excitation

as a production technology however judging from the data collected in this study, the chemical and

thermal production technologies discussed in the introduction remain the best in-situ methods for

reducing the viscosity of the bitumen fraction in oil sand reservoirs.

5.5 Cornstarch and Oil Sand

In order to meet the deadlines of the industrial sponsor, acoustic excitation experiments on oil sand

were accelerated ahead of the cornstarch experiments. As a result of damage that occurred to the

viscometer and RTDs during the oil sand experiments and the time and cost involved in sending the

device out for repair, the cornstarch investigation was discontinued. It is instead left as point for

future study. Appendix E provides a more thorough explanation of how the granular nature of the

oil sand resulted in the damage to the viscometer and RTDs.

88

Chapter 6 Conclusions and Recommendations for Future Work

6.1 Conclusions

6.1.1 Experimental Apparatus Development

A novel experimental apparatus was developed which was capable of studying the effects of

acoustic excitation on the viscosity of an enclosed fluid sample. The apparatus was capable of:

 Simulating the temperature and static pressure conditions present in an intermediate depth

oil sand reservoir with temperatures ranging from -20 to 95°C and static pressures ranging

from 0 to 1500 psi.

 Measuring the temperature and pressure at an array of locations in and around the test

sample.

 Measuring the infinite shear viscosity at the centre of the test sample.

 Subjecting the test sample to one-dimensional acoustic excitation at amplitudes ranging

from 0 to 400psi and frequencies from 5 to 20 Hz.

 Running parametric experiments whilst logging sensor data in near real-time and

populating graphs on a custom design control program with a graphical user interface.

In addition to the physical apparatus and control software, a custom Matlab script was written for

post-processing the experimental data. This script was responsible for:

 Applying calibration coefficients to raw experimental data and density correction factors to

viscosity data

 Parsing and analyzing the experimental data to detect regions of interest

 Plotting the processed experimental data on customized graphs to reveal trends

89

Several calibration experiments were performed to ensure the integrity of the data being collected.

Sensors were calibrated as follows:

 RTDs were calibrated using a factory-calibrated temperature controlled water bath.

Sensors were suspended in the bath and incrementally subjected to prescribed

temperatures. Calibration coefficients were calculated using the National Instruments MAX

calibration utility.

 Pressure transducers were calibrated using a factory-calibrated air pressure controller.

Sensors were installed in the test chamber and incrementally subjected to prescribed static

pressures. Again, calibration coefficients were calculated using the National Instruments

MAX calibration utility.

 The viscometer was calibrated using a NIST traceable viscosity standard (N2500). The

viscometer was suspended in the fluid at atmospheric pressure and the temperature was

adjusted incrementally such that the viscosity of the fluid varied over the measurement

range of the viscometer.

6.1.2 Experimental Results

Acoustic excitation experiments were performed on a variety of test fluids. The following

observations were derived from the resulting data:

 Acoustic excitation at a magnitude of 0 to 400psi and at frequencies of 5 to 20 Hz did not

have a measurable effect on the viscosity of N2500 or bitumen

o Acoustic excitation under these conditions is therefore not suitable for reducing the

viscosity of the bitumen fraction in an intermediate depth oil sand production

reservoir

 Acoustic excitation under the same conditions had a measurable effect on the viscosity of

bentonite and water slurry (tested at a 13% bentonite mass concentration)

90

o Increased acoustic excitation amplitude resulted in decreased bentonite slurry

viscosity (negative correlation).

 The magnitude of this effect appeared to be asymptotic with the difference

in stimulated viscosity between 100 and 200psi being greater than the

difference in stimulated viscosity between 200 and 400psi. This echoes the

viscous behavior reported in (Ariadji, 2005)

o In the range of 5 to 20Hz, acoustic excitation frequency did not have a measurable

effect on the viscosity of bentonite slurries tested (no correlation). This contrasts

the results reported in (Ariadji, 2005) where it was observed that excitation

frequency had a measurable impact on viscosity. This difference could be the result

of the testing being performed on different fluids.

o Changes in bentonite slurry viscosity due to acoustic excitation were time

dependent

 Large viscosity reductions occurred immediately after the onset of the

acoustic excitation. Initial viscosity reductions as high as 20% per minute

were observed.

 Viscosity asymptotically approached a minimum value over time. Total

viscosity reductions as high as 75% were observed.

 Immediately following the termination of acoustic excitation, bentonite

viscosity dropped sharply from the asymptotic value. The magnitude and

duration of this final viscosity reduction increased with increased acoustic

excitation amplitude (positive correlation)

 Thixotropic behavior was observed once acoustic excitation was terminated

o Subjecting bentonite samples to acoustic excitation before thixotropic recovery

could complete had no effect on the magnitude of the asymptotic viscosity.

Viscosity reductions due to acoustic excitation are therefore independent of the

initial viscosity of the bentonite slurry.

91

6.2 Recommendations for Future Work

As a result of the damage that occurred to the viscometer during the oil sand experiments and time

constraints on the project, a number of experiments could not be performed. The following are left

as suggested future exercises for persons wishing to continue this work:

 Continue the study of the effects of acoustic excitation on the viscosity of bentonite

slurries. Specifically:

o Performing acoustic excitation experiments at lower frequencies (0 to 5 Hz) may

yield a cutoff frequency where stimulation ceases to be acoustic and is instead

quasi-static in nature. In place of the large viscosity reductions observed during

acoustic excitation, relatively small changes in viscosity are expected under quasi-

static pressure loading so the behavior around this cutoff frequency is of interest.

o Studying the final viscosity drop observed after termination of acoustic excitation

could yield insights as to the relationship between the magnitude of the acoustic

excitation and the magnitude and duration of this final viscosity reduction. A

greater resolution of acoustic excitation amplitudes and a more responsive

viscometer would be required for such an investigation.

o Performing similar experiments using a larger number of acoustic excitation

amplitudes could provide insight into whether the negative correlation between

viscosity and acoustic excitation amplitude is non-linear, as was hinted at by the

current experiments.

o Studying the effects of the acoustic excitation waveform on the viscous response of

bentonite slurries (i.e. square, sawtooth, etc. vs sinusoidal waveform) could result

in a different dynamic response due to the different stress patterns acting on the

particles as they try to settle.

o Two of the experiments in the current study were discontinued when the viscosity

of the bentonite sample failed to undergo complete thixotropic recovery. This

permanent reduction in viscosity occurred after extended periods of excitation at

±400psi. Understanding the mechanism behind this permanent viscosity reduction

and the conditions required to produce it may be of interest to members of the

92

drilling industry since they subject bentonite to cyclic pressurization during slurry

pumping operations.

 Investigate the effects of acoustic excitation on the viscosity of other fluids. Specifically:

o Dilatant fluids such as cornstarch and water mixtures.

o Oil sand. A study using oil sand would require a vane rheometer or some better

method for measuring the viscosity of such a course substance. The study would

have limited applicability to an in-situ production technology since oil sand at

intermediate depths is effectively a solid.

93

References

1. Agar, J. G., Morgenstern, N. R., & Scott, J. D. (1987). Shear strength and stress-strain

behaviour of Athabasca oil sand at elevated temperatures and pressures. Canadian

Geotechnical Journal , 1-10.

2. Alberta Queen's Printer. (2006). Pressure Equipment Exemption Order. Safety Codes Act .

3. Allen, E. W. (2008). Process water treatment in Canada's oil sands industry: I. Target

pollutants and treatment objectives. Journal of Environment Engineering Science , Vol. 7,

pg.123-128.

4. Ariadji, T. (2005). Effect of vibration on rock and fluid properties: on seeking the

vibroseismic technology mechanicsms. Society of Petroleum Engineering International .

5. Bair, S. S. (2007). High-Pressure Rheology for Quantitative Elastohydrodynamics (Vol. First

Edition). Oxford: Elsevier Science.

6. Beresnev, I. A., & Johnson, P. A. (1994). Elastic-wave stimulation of oil production: A review

of methods and results. Geophysics , 1000-1017.

7. Bogolyubov, B. N., & al., e. (2001). Action of powerful seisomo-acoustic radiation on oil-

bearing layers. International symposium on nonlinear acoustics. Moscow.

8. Chen, H. S., Chen, D. R., Wang, J. D., & Li, Y. J. (2006). Experimental study on the speacial

shear thinning process of a kind of non-Newtonian fluid. Science in China Series E:

Technological Sciences , 138-143.

9. Clark, K. A. (1931). Patent No. 1,791,797. United States.

10. Department of Energy. (2008). Alberta's Oil Sands. Opportunity. Balance. Government of

Alberta.

11. Duhon, R. D., & Campbell, J. M. (1965). The effect of ultrasonic energy on the flow of fluids

in porous media. Annual Eastern Regional Meeting of SPE/AIME. Charleston.

12. Dusseault, M. B. (1993). Cold production and enhanced oil recovery. Journal of Petroleum

Technology , 16-18.

13. Fairbanks, H. V., & Chen, W. I. (1971). Ultrasonic acceleration of liquid flow through porous

media. Chemical Engineering Progress Symposium Series , 108-116.

14. Fox, R. W., McDonald, A. T., & Pritchard, P. J. (2006). Introduction to Fluid Mechanics.

Hoboken: John Wiley & Sonds Inc.

94

15. Grim, R. E., & Necip, G. (1978). Bentonites - Geology, Mineralogy, Properties, and Uses.

Elsevier.

16. Hamida, T., & Babadaglia, T. (2005). Effect of ultrasonic waves on the capillary-imbibition

recovery of oil. Society of Petroleum Engineering International .

17. Hamida, T., & Babadaglia, T. (2005). Effects of ultrasonic waves on immiscible and miscible

displacement in porous media. Society of Petroleum Engineering International .

18. Haydn, M. H. (Ed.). (2006). Developments in Clay Science, Applied Clay Mineralogy -

Occurrences, Processing and Applications of Kaolins, Bentonites, Palygorskite-Sepiolite, and

Common Clays (Vol. 2). Elsevier.

19. Heidrick, T., Bilodeau, V., & Godin, M. (2004). Oil Sands Research Inventory. Alberta Energy

Research Institute.

20. Hirsch, T. (2005). Treasure in the Sand: An Overview of Alberta's Oil Sands Resources.

Canada West Foundation.

21. Huh, C. (2006). Improved oil recovery by seismic vibration: A preliminary assessment of

possible mechanisms. Society of Petroleum Engineering International .

22. Isaacs, E. (2005). Canadian Oil Sands: Development and Future Outlook. Alberta Energy

Research Institute.

23. Kouznetsov, O. L. (1998). Improved oil recovery by application of vibro-energy to

waterflooded sandstones. Journal of Petroleum Science & Engineering , 191-200.

24. Krishnan, M. D., & Aghijit, P. K. (2010). Rheology of Complex Fluids. New York: Springer.

25. Kuznetsov, O. L. (2002). Seismic techniques of enhanced oil recovery: Experimental and

field results. Energy Sources , 877-889.

26. Malykh, N., Petrov, V., & Sankin, G. (2003). On sonocapillary effect. World Congress on

Ultrasonics. Paris.

27. McCain, W. D. (1990). The Properties of Petroleum Fluids. Tulsa: Pennwell Books.

28. Mehrotra, A. K., & Svrcek, W. Y. (1986). Viscosity of Compressed Athabasca Bitumen.

Canadian Journal of Chemical Engineering , 844-847.

29. Merkt, F. S., Robert, D., & Deegan, R. D. (2004). Persistent holes in a fluid. Physical Review

Letters .

30. Mezger, T. G. (2006). The Rheology Handbook (2nd Revised Edition ed.). Hannover:

Vincentz.

95

31. Popov, E. P. (1998). Engineering Mechanics of Solids (2nd Edition ed.). Upper Saddle River,

New Jersey: Prentice Hall.

32. Roberts, P. M. (2005). Laboratory observations of altered porous fluid-flow behavior in

Berea sandstone induced by low-frequency dynamic stress stimulation. Acoustic Physics ,

S140-S148.

33. Simonov, V. F. (1996). Results of experimental oilfield study on enhancing oil recovery by

vibroseismic method. Oilfield Development and Production , 48-52.

34. UBC Department of Forestry. (n.d.). University of British Columbia. Retrieved October 5,

2009, from Oil Sands Moratorium:

http://courses.forestry.ubc.ca/cons425/Simulations/OilSandsMoratorium/tabid/3557/Defa

ult.aspx

35. Zhu, T., Xutao, H., & Vajjha, P. (2005). Downhole harmonic vibration oil-displacement

system: A new IOR tool. Society of Petroleum Engineering Western Regional Meet. Irvin.

96

Appendices

Appendix A Pressure Vessel Design

To ensure safe operation when pressurized, a significant amount of time was spent designing the

experimental apparatus chamber to withstand the range of internal pressures needed to simulate

downhole reservoir conditions. As the first component of the engineering design, the Alberta

Boilers Safety Association (ABSA) documentation governing the design and operation of boilers and

pressure vessels was consulted extensively to ensure compliance with provincial legislation. The

design and operation of the apparatus chamber was exempted from provincial regulations since the

device was of a small volume and was to be used for research. With the legislative requirements

met, focus was then shifted to the mechanical design of the chamber.

The initial pressure vessel design was based on the thick-walled pressure vessel equations

commonly found in strength of materials textbooks such as (Popov, 1998). These gave insights into

the radial, axial, and longitudinal components of stress and thus the combined von Mises stress

present in the chamber walls. The analysis was then refined to include stress concentrations at the

sensor mounting locations as well as a fatigue analysis since the chamber was to be subjected to

cyclical pressure loading. After including a conservative factor of safety, the resulting wall thickness

was used in the Solidworks CAD model. As the chamber already needed to be a fairly complex

geometry with regards to areas of stress concentration, every attempt was made to avoid welding

on the pressure bearing walls. For this reason, the CAD model was designed such that the

structural component of the chamber would be machined as a single component.

Once the CAD model was fully developed, including the Class 1500 flanged ends of the chamber and

the sensor mounting locations, an FEA analysis was performed using Solidworks COSMOS to get a

more accurate picture of the stress distribution. The original calculations proved to be quite

accurate in this respect and no further modification of the CAD model was required. Regardless of

the close agreement between the two analyses, the chamber was still hydro-tested before being

97

used in acoustic experiments. The figures below show the graphical result of an FEA analysis and

the manufacturing of the main chamber in the CNC mill.

Figure 48- Left: Stress distribution in the chamber structure (from a Solidworks COSMOS FEA internal pressure study).
Right: Main body of the chamber being manufactured on the CNC mill (water jacket was later welded on).

98

Appendix B Thermal Design

It was anticipated that experiments using samples with low thermal diffusivities such as bitumen

and oil sand would take several hours to stabilize at the temperature setpoints. In order to gain a

better understanding of how long these tests would actually take, a transient heat transfer analysis

was performed to estimate the heating times required to bring room temperature samples up to

the maximum testing temperature of 80°C.

As a first approximation, heating times were calculated using a radial heat conduction simulation in

Solidworks COSMOS. Even distribution of the water jacket inlet and outlet ports around the

perimeter of the chamber allowed an assumption of radial symmetry. The analysis also assumed a

constant outer wall temperature of 100°C, the maximum temperature of the ethylene glycol

mixture in the water bath.

Using bitumen as the worst case scenario with regards to thermal diffusivity, the analysis yielded an

upper limit of approximately 8 hours for heating a test sample from 20°C to 80°C. Actual testing

using bitumen showed this analysis to be a somewhat conservative estimate since heating times

were on the order of 5-6 hours. Since the device outperformed the theoretical predictions, no

additional effort was made to explain the discrepancy in the heating times though it was thought

that convection within the chamber (which was not included in the simulation) would have

contributed to the error.

99

Appendix C Modal Analysis

Since the test chamber was to be subjected to acoustic excitation, there was a risk that it might

inadvertently be stimulated at one of its natural frequencies with potentially dangerous

consequences. In order to determine whether or not this was a legitimate concern it was decided

to estimate these natural frequencies using a modal analysis.

The modal analysis was performed in a series of key steps for both the radial and longitudinal

directions of the test chamber. These consisted of developing material constitutive relationships,

generating lumped parameter models, solving the equations of motion, and solving the specific

solution based on the actual chamber geometry. The complete analysis was submitted for project

credit in the course ENG M 670 – Modeling and Simulation of Engineering Systems in the Spring of

2008. A summary is presented here.

In order to perform the modal analysis, constitutive relationships were needed to relate force to

displacement (i.e.) for the various sections of the test chamber.

These relationships were derived from the material properties of the various components. For

most sections of the test chamber this involved converting stress-strain relationships to force-

displacement relationships while for the bolted connections, joint stiffnesses were used.

Using these stiffnesses, lumped parameter models were developed for both the radial and

longitudinal motions of the test chamber. Figure 49 and Figure 50 illustrate the position of the

lumped masses as well as the stiffnesses connecting them. Both figures show a radial slice of the

test chamber with both top and bottom flanges bolted in place. In the first case, radial motions

were assumed axisymmetric so the center vertical axis of the test chamber was treated as a fixed

boundary. Similarly, in the second case longitudinal motions were assumed symmetric about the

chamber trunnions so the center horizontal axis was treated as a fixed boundary.

100

Kf1

Kwj

Kiw

Kcf1 Kcf2

miw

Kcf1 Kcf2

½ mf2

Kf3

½ mf2

x1 x2 x3

mwj

½ mf2

mb +

½ mf1

½ mf2

CL

F
IX

E
D

mb +

½ mf3

Figure 49 - Lumped parameter model of the radial motion of the test chamber. Note: Sensor ports were not considered
in the radial model.

101

FIXED

CL

2
K

e
ff

 w
j

2
K

e
ff

 w
j

2
K

e
ff

 i
w

2
K

e
ff

 i
w

½ mb

+ mf2

½ mwj

½ mwj

½ miw

½ miw
K

b

½ mb

+ mf2

½ mb

+ mf1

y1

y2

½ mb

+ mf3

Figure 50 – Lumped parameter model of the longitudinal motion of the test chamber. Note: The water jacket was not
considered in the longitudinal model.

These lumped parameter models were converted to network diagrams and in turn to free-body

diagrams as shown in Figure 51 and Figure 52. The equations of motion for the lumped masses

were derived from these free-body diagrams and solved by assuming an unforced harmonic motion

of the masses. The natural frequencies and modes of vibration were extracted from the resulting

Eigen value problem using MATLAB.

102

Kcf2

Kf1

Kf3

Kcf1

Kwj

Kiw

F
IX

E
D

x1 x2 x3

M
3

 =
 2

m
b
 +

 ½
 m

f1
 +

 m
f2

+
 ½

 m
f3

M
2
 =

 m
w

j

M
1
 =

 m
iw

x1 x2 x3

M
1 M

2

11xM

)(121 xxkcf

)(232 xxkcf

22xM 33xM M
3

1xk iw

2xk wj

33xk f

31xk f

Figure 51 - Network diagram (top) and free-body diagrams (bottom) governing radial motion

103

2
K

e
ff

 w
j

2
K

e
ff

 i
w

FIXED

K
b

M2 = ½ mb

+ mf1

y1

y2

M1 = ½ miw + ½ mwj

+ ½ mb + mf2

y1

y2
M2

M1

22yM

11yM

1iw 2 ykeff 1wj 2 ykeff

)(12 yykb

Figure 52 –Network diagram (left) and free-body diagrams (right) governing longitudinal motion

Owing to the relatively high stiffness of the test chamber, the calculated natural frequencies were

several orders of magnitude higher than the expected acoustic excitation frequencies (i.e. MHz vs

Hz) so it was concluded that resonance was unlikely to be a major concern during operation.

Despite this conclusion, the chamber was closely observed for resonant behavior the first time it

was subjected to a slow frequency sweep.

104

Appendix D Acoustic Pressure Amplitude

One of the analyses associated with generating the acoustic pressure was determining the

constitutive relationship between volumetric compression and pressure generation in the test

fluids. This understanding was essential in sizing the linear actuator piston stroke required for the

acoustic excitation experiments.

It was known early on that this relationship would depend largely on the amount of residual gas in

the chamber however rather than try to account for this in the analysis, design features were

incorporated into the chamber to remove as much of it as possible. The constitutive analysis was

thus assumed to be that for a compressed liquid, i.e.:

Equation 5 - Isothermal Compressibility Equation for a Compressed Liquid

Where is the isothermal compressibility, is the volume of fluid, and is the pressure.

By modifying this partial differential equation to treat finite changes in volume and pressure, a

relationship between piston displacement and pressure was developed. This is detailed below.

Where is the initial volume of fluid in the chamber,

 is the compressed fluid volume,

 is the isothermal compressibility of the fluid,

and is the gauge pressure of the fluid.

Incorporating the chamber geometry:

105

Where and are the axial length and diameter of the inner wall of the chamber,

and and are the piston stroke and piston diameter respectively

Therefore by combining and rearranging the above equations and assuming the fluid is initially at

atmospheric pressure, the gauge pressure resulting from a given piston displacement is:

Equation 6 - Constitutive Relationship between Piston Stroke and Sample Pressure

When this analysis was initially performed it was decided to size the linear actuator by using the

isothermal compressibility data for water since it was readily available. For the experimental

pressures, this yielded a pairing of a 14mm diameter piston with a 37μm piston stroke. As stated in

section 3.3.3.7 this pairing ultimately proved unsuccessful owing to difficulties in removing all of the

residual gas in the test chamber. The subsequent use of a much larger piston with a larger stroke

compensated for this shortcoming.

106

Appendix E Description of Damage to the Viscometer

During the chamber pressurization the viscometer began reporting erroneous viscosity data so the

equipment was dismantled for investigation. Close inspection revealed that the viscometer shaft

was bent during this initial pressurization.

Efforts were made to pack the granular oil sand test sample into the chamber as uniformly as

possible before commencing the first of the oil sand acoustic excitation experiments. Despite these

precautions however it is theorized that a slight inhomogeneous packing caused an internal lateral

flow as the oil sand was redistributed to a homogeneous density under pressure. This internal flow

could have applied the lateral force which bent the viscometer shaft.

The schematics in Figure 53 illustrate how inhomogeneous packing prior to pressurization could

have resulted in the bending of the viscometer shaft. In the left schematic, the left side of the

chamber is more densely packed with oil sand than the right side of the chamber. During

pressurization, the internal flow of oil sand would be from left to right so as to have a homogeneous

density distribution within the chamber. As the right schematic illustrates, this would cause a

lateral bending force on the viscometer bulb (from left to right) resulting in the bending of the

viscometer shaft.

107

Densely Packed

Oil Sand

(High Density)

Loosely Packed

Oil Sand

(Low Density)

Viscometer

Bulb

Bent

Viscometer Bulb

Uniformly Packed

Oil Sand

Unpressurized Pressurized

Lateral Force

On Viscometer Bulb

Figure 53 - Schematic diagrams showing inhomogeneous packing of oil sand in the test chamber (left) and material resettling which caused the viscometer to be bent
(right)

108

Appendix F Solidworks Drawings

17234115 22 76101 121389 1415 1812

ITEM
 N

O
.

PA
RT N

UM
BER

Q
TY.

1
Tensile Testing

M
achine

1

2
Tensile Testing

M
achine C

ross Head
2

3
Test C

ham
ber

A
ssem

bly
1

4
Electronics Enclosure

1

5
M

ounting Plate
1

6
Thread

ed
 Piston Rod

1

7
Hyd

raulic Piston
C

oupling
1

8
3/4-10 Bolt

4

9
3/4 Lock W

asher
8

10
3/4-10 N

ut
4

11
1/2-20 Bolt

8

12
1/2 Lock W

asher
22

13
1/2-20 N

ut
8

14
7/16-14 Bolt

4

15
7/16 Lock W

asher
8

16
7/16-14 N

ut (N
ot

Show
n)

4

17
1-14 Bolt

1

18
1-14 N

ut
1

22
1/2-13 Bolt

6

SIG
N

A
TURE

13-JUL-10

TEN
SILE TESTIN

G

M
A

C
HIN

E IN
STA

LLA
TIO

N

M
. EV

A
N

S
D

EPA
RTM

EN
T O

F
M

EC
HA

N
IC

A
L EN

G
IN

EERIN
G

4-9 M
EC

H. EN
G

. BLD
G

.
ED

M
O

N
TO

N
, A

LBERTA
T6G

 2G
8

PRO
PRIETA

RY A
N

D C
O

N
FIDEN

TIA
L

THE IN
FO

RM
A

TIO
N

 C
O

N
TA

IN
ED

 IN
 THIS

D
RA

W
IN

G
 IS THE SO

LE PRO
PERTY O

F THE
IM

PERIA
L O

IL C
EN

TRE FO
R O

IL SA
N

D
S

IN
N

O
V

A
TIO

N
 (C

O
SI). A

N
Y REPRO

D
UC

TIO
N

IN

 PA
RT O

R A
S A

 W
HO

LE
W

ITHO
UT THE W

RITTEN
 PERM

ISSIO
N

 O
F

C
O

SI IS PRO
HIBITED

.

N
O

TES:

W
EIG

HT:
SHEET 1 O

F 1

M
FG

 A
PPR.

EN
G

 A
PPR.

C
HEC

KED

D
RA

W
N

D
A

TE
N

A
M

E
D

IM
EN

SIO
N

S A
RE IN

 IN
C

HES
TO

LERA
N

C
ES UN

LESS SPEC
IFIED

:
FRA

C
TIO

N
A

L
1/32

A
N

G
ULA

R: M
A

C
H

 1° BEN
D

 2°

TW
O

 PLA
C

E D
EC

IM
A

L
 .010

THREE PLA
C

E D
EC

IM
A

L
 .005

D
O

 N
O

T SC
A

LE D
RA

W
IN

G

-

V
A

RIO
US

FIN
ISH UN

LESS SPEC
IFIED

M
A

TERIA
L

B
D

W
G

. N
A

M
E

SIZE

SC
A

LE:1:8

UN
IVERSITY O

F A
LBERTA

109

SIGNATURE

12-JUL-10

ASSEMBLED TEST CHAMBER

M. EVANS
DEPARTMENT OF

MECHANICAL ENGINEERING

4-9 MECH. ENG. BLDG.
EDMONTON, ALBERTA

T6G 2G8
PROPRIETARY AND CONFIDENTIAL
THE INFORMATION CONTAINED IN THIS

DRAWING IS THE SOLE PROPERTY OF THE
IMPERIAL OIL CENTRE FOR OIL SANDS

INNOVATION (COSI). ANY REPRODUCTION
IN PART OR AS A WHOLE

WITHOUT THE WRITTEN PERMISSION OF
COSI IS PROHIBITED.

NOTES:

1. SHOWN WITH HYDRAULIC PISTON

WEIGHT:
SHEET 1 OF 2

MFG APPR.

ENG APPR.

CHECKED

DRAWN

DATENAME
DIMENSIONS ARE IN INCHES

TOLERANCES UNLESS SPECIFIED:
FRACTIONAL 1/32
ANGULAR: MACH 1° BEND 2°
TWO PLACE DECIMAL .010
THREE PLACE DECIMAL .005

DO NOT SCALE DRAWING

FINISH UNLESS SPECIFIED

A
DWG. NO.SIZE

SCALE:1:5

UNIVERSITY OF ALBERTA

VARIOUS
MATERIAL

-

110

1917

2 18626232224716151411112

5
10

8 25

3

913 21

4

20

ITEM
 N

O
.

C
O

M
PO

N
EN

T
Q

TY.

1
Test C

ham
ber

1

2
V

iscom
eter

1

3
V

iscom
eter Flange

1

4
7/8-14 Flange Bolt

14

5
7/8 Flange W

asher
14

6
Flange O

-Ring
2

7
Pressure Transd

ucer
9

8
RTD

 Probe
9

9
Sw

agelok RTD

Fitting
9

10
Hyd

raulic Piston
1

11
Hyd

raulic Piston
Flange

1

12
Hyd

raulic Piston O
-

Ring Parker 2-336
2

13
Hyd

raulic Piston
Backup Ring 2-336

2

14
Prim

ing V
alve

1

15
1/4 N

PTM
 90° Elbow

1

16
1/4 N

PTM
 to 1/4

N
PTF A

d
apter

1

17
M

ounting Bracket
1

18
7/8-14 M

ounting
Bracket Bolt

2

19
7/8 M

ounting
Bracket W

asher
2

20
Sw

agelok 3/8 Tube
N

eed
le V

alve
2

21
Sw

agelok 3/8 Tube
C

ross Fitting
2

22
Sw

agelok 3/8 Tube
T Fitting

6

23
1/4 N

PTM
 to 3/8

Tube A
d

apter
8

24
Sw

agelok 3/8
Tubing

4

25
Sw

agelok 3/8
Tubing

2

26
Sw

agelok 3/8
Tubing

4

SIG
N

A
TURE

13-JUL-10

EXPLO
D

ED
 TEST C

HA
M

BER

M
. EV

A
N

S
D

EPA
RTM

EN
T O

F
M

EC
HA

N
IC

A
L EN

G
IN

EERIN
G

4-9 M
EC

H. EN
G

. BLD
G

.
ED

M
O

N
TO

N
, A

LBERTA
T6G

 2G
8

PRO
PRIETA

RY A
N

D C
O

N
FIDEN

TIA
L

THE IN
FO

RM
A

TIO
N

 C
O

N
TA

IN
ED

 IN
 THIS

D
RA

W
IN

G
 IS THE SO

LE PRO
PERTY O

F THE
IM

PERIA
L O

IL C
EN

TRE FO
R O

IL SA
N

D
S

IN
N

O
V

A
TIO

N
 (C

O
SI). A

N
Y REPRO

D
UC

TIO
N

IN

 PA
RT O

R A
S A

 W
HO

LE
W

ITHO
UT THE W

RITTEN
 PERM

ISSIO
N

 O
F

C
O

SI IS PRO
HIBITED

.

N
O

TES:

1. SHO
W

N
 HERE W

ITH HYD
RA

ULIC
 PISTO

N

W
EIG

HT:
SHEET 2 O

F 2

M
FG

 A
PPR.

EN
G

 A
PPR.

C
HEC

KED

D
RA

W
N

D
A

TE
N

A
M

E
D

IM
EN

SIO
N

S A
RE IN

 IN
C

HES
TO

LERA
N

C
ES UN

LESS SPEC
IFIED

:
FRA

C
TIO

N
A

L
1/32

A
N

G
ULA

R: M
A

C
H

 1° BEN
D

 2°

TW
O

 PLA
C

E D
EC

IM
A

L
 .010

THREE PLA
C

E D
EC

IM
A

L
 .005

D
O

 N
O

T SC
A

LE D
RA

W
IN

G

-

V
A

RIO
US

FIN
ISH UN

LESS SPEC
IFIED

M
A

TERIA
L

B
D

W
G

. N
A

M
E

SIZE

SC
A

LE:1:5

UN
IVERSITY O

F A
LBERTA

111

ITEM NO. PART NAME QTY.
1 Cylinder Body 1

2 Water Jacket 2
3 Support Pins 2

4 Water Jacket
Welded Ports 8

WEIGHT:

UNIVERSITY OF ALBERTA

SCALE:1:6

VARIOUS
DWG. NAME

T6G 2G8
PROPRIETARY AND CONFIDENTIAL EDMONTON, ALBERTA

4-9 MECH. ENG. BLDG.

MECHANICAL ENGINEERING
DEPARTMENT OF

A
FINISH UNLESS SPECIFIED

COSI IS PROHIBITED.
WITHOUT THE WRITTEN PERMISSION OF

IN PART OR AS A WHOLE
INNOVATION (COSI). ANY REPRODUCTION

IMPERIAL OIL CENTRE FOR OIL SANDS
DRAWING IS THE SOLE PROPERTY OF THE

 AND WATER JACKET

SIZE

SHEET 1 OF 1

MFG APPR.

ENG APPR.

CHECKED

DRAWN

DATENAME

4. WELD SUPPORT PINS TO BOTH THE CYLINDER BODY
3. WELD ALL COMPONENTS TOGETHER63
2. CHAMFER SHARP EDGES
1. REMOVE ALL BURRS

 .005

NOTES:

DO NOT SCALE DRAWING

THE INFORMATION CONTAINED IN THIS

DIMENSIONS ARE IN INCHES

TOLERANCES UNLESS SPECIFIED:
FRACTIONAL 1/32
ANGULAR: MACH 1° BEND 2°
TWO PLACE DECIMAL .010
THREE PLACE DECIMAL

MATERIAL

TEST CHAMBER MANUFACTURING

SIGNATURE

02-APR-08M. EVANS

3

1

2

4

112

15
.0

6

11
.8

1

1.63

1.63

8.50

UNIVERSITY OF ALBERTA

SCALE:1:3

SIZE DWG. NAME

B

MATERIAL

FINISH UNLESS SPECIFIED

17-4 STAINLESS STEEL

63
DO NOT SCALE DRAWING

DIMENSIONS ARE IN INCHES
TOLERANCES UNLESS SPECIFIED:
FRACTIONAL 1/32
ANGULAR: MACH 1° BEND 2°
TWO PLACE DECIMAL .010
THREE PLACE DECIMAL .005

NAME DATE

DRAWN

CHECKED

ENG APPR.

MFG APPR.

SHEET 1 OF 3
WEIGHT:

NOTES:

1. REMOVE ALL BURRS
2. CHAMFER SHARP EDGES

THE INFORMATION CONTAINED IN THIS
DRAWING IS THE SOLE PROPERTY OF THE

IMPERIAL OIL CENTRE FOR OIL SANDS
INNOVATION (COSI). ANY REPRODUCTION

IN PART OR AS A WHOLE
WITHOUT THE WRITTEN PERMISSION OF

COSI IS PROHIBITED.

PROPRIETARY AND CONFIDENTIAL

DEPARTMENT OF
MECHANICAL ENGINEERING

4-9 MECH. ENG. BLDG.
EDMONTON, ALBERTA

T6G 2G8

M. EVANS

TEST CHAMBER BODY

22-SEP-08

SIGNATURE

113

6.50 BCD

A

A

7/8-14 THREADED HOLE THRU
(16 PLACES)

3.20

3.
35

5.
21

9

2.
95

R0.0
1 R

EF

0.039

45° TYP

4.
53

5.37

7.53

9.70

11.86

0.06 TYP

R0.197 TYP

10.78
8.61

6.45

4.28

A

B

SECTION A-A

R
16

R
16

1.38

0.
25

0.
36

7R0.04

1.50
1.63

DETAIL A
SCALE 2 : 3

1/2 NPT THREADED HOLE THRU

MIN RAD.

MIN RAD.

0.206

0.
31

2
-0

.0
03

+0
.0

02

R0.027

R0.03

R0.0
05

R0.005

(0° PREFERRED)
0° TO 5° BOTH SIDES

DETAIL B
SCALE 5 : 2

R
16

R
16

SENSOR PORT (18 PLACES)

O-RING GLAND (BOTH ENDS)

UNIVERSITY OF ALBERTA

SCALE:1:3

SIZE DWG. NAME
B

SHEET 2 OF 3WEIGHT:

DEPARTMENT OF
MECHANICAL ENGINEERING

4-9 MECH. ENG. BLDG.
EDMONTON, ALBERTA

T6G 2G8

TEST CHAMBER BODY

DATE

22-SEP-08M.E.
DRAWN CHECKED ENG APPR. MFG APPR.

114

45°

C

C

D

SECTION C-C

0.063

0.3
9

2.3
8

60°

DETAIL D
SCALE 1 : 1

1/4 NPT TAPPED HOLE

UNIVERSITY OF ALBERTA

SCALE:1:3

SIZE DWG. NAME
B

SHEET 3 OF 3WEIGHT:

DEPARTMENT OF
MECHANICAL ENGINEERING

4-9 MECH. ENG. BLDG.
EDMONTON, ALBERTA

T6G 2G8

TEST CHAMBER BODY

DATE

22-SEP-08M.E.
DRAWN CHECKED ENG APPR. MFG APPR.

115

5.028

0.063

90°

45°

135°

A

A

1.
00

1.
00

0.61 THRU
6 PLACES

1.50 THRU
10 PLACES

11
.8

1

2.66
4.82

6.99
9.15

1.57

3.74

5.91
8.07
10.24

SECTION A-A

CL

CL

UNIVERSITY OF ALBERTA

SCALE:1:3

SIZE DWG. NO.

B

MATERIAL

FINISH UNLESS SPECIFIED

316 STAINLESS

63
DO NOT SCALE DRAWING

DIMENSIONS ARE IN INCHES
TOLERANCES UNLESS SPECIFIED:
FRACTIONAL 1/32
ANGULAR: MACH 1° BEND 2°
TWO PLACE DECIMAL .010
THREE PLACE DECIMAL .005

NAME DATE

DRAWN

CHECKED

ENG APPR.

MFG APPR.

SHEET 1 OF 1WEIGHT:

NOTES:

1. REMOVE ALL BURRS
2. CHAMFER SHARP EDGES

THE INFORMATION CONTAINED IN THIS
DRAWING IS THE SOLE PROPERTY OF THE

IMPERIAL OIL CENTRE FOR OIL SANDS
INNOVATION (COSI). ANY REPRODUCTION

IN PART OR AS A WHOLE
WITHOUT THE WRITTEN PERMISSION OF

COSI IS PROHIBITED.

PROPRIETARY AND CONFIDENTIAL

DEPARTMENT OF
MECHANICAL ENGINEERING

4-9 MECH. ENG. BLDG.
EDMONTON, ALBERTA

T6G 2G8

M. EVANS

TEST CHAMBER WATER JACKET

22-JUN-08

SIGNATURE

116

0.04

45°

5.
98 5.

48

0.25 THRU
5 PLACES
36° APART

1.48

1.50

SIGNATURE

22-JUN-08

TEST CHAMBER TRUNNION

M. EVANS
DEPARTMENT OF

MECHANICAL ENGINEERING

4-9 MECH. ENG. BLDG.
EDMONTON, ALBERTA

T6G 2G8
PROPRIETARY AND CONFIDENTIAL
THE INFORMATION CONTAINED IN THIS

DRAWING IS THE SOLE PROPERTY OF THE
IMPERIAL OIL CENTRE FOR OIL SANDS

INNOVATION (COSI). ANY REPRODUCTION
IN PART OR AS A WHOLE

WITHOUT THE WRITTEN PERMISSION OF
COSI IS PROHIBITED.

NOTES:

1. REMOVE ALL BURRS
2. CHAMFER SHARP EDGES

WEIGHT:
SHEET 1 OF 1

MFG APPR.

ENG APPR.

CHECKED

DRAWN

DATENAME
DIMENSIONS ARE IN INCHES

TOLERANCES UNLESS SPECIFIED:
FRACTIONAL 1/32
ANGULAR: MACH 1° BEND 2°
TWO PLACE DECIMAL .010
THREE PLACE DECIMAL .005

DO NOT SCALE DRAWING

63
FINISH UNLESS SPECIFIED

A
DWG. NO.SIZE

SCALE:1:2

UNIVERSITY OF ALBERTA

316 STAINLESS STEEL
MATERIAL

117

6.50 BCD

8X .906 THRU
1/4 NPT

 .438 THRU ALL

1.
23

AA

1.
62

5

8.500

45° TYP

.0
6

TY
P

1.
06

1.00

.0
83

1" NPSF TAPPED HOLE

SECTION A-A

SIGNATURE

02-APR-08

VISCOMETER FLANGE

M. EVANS
DEPARTMENT OF

MECHANICAL ENGINEERING

4-9 MECH. ENG. BLDG.
EDMONTON, ALBERTA

T6G 2G8
PROPRIETARY AND CONFIDENTIAL
THE INFORMATION CONTAINED IN THIS

DRAWING IS THE SOLE PROPERTY OF THE
IMPERIAL OIL CENTRE FOR OIL SANDS

INNOVATION (COSI). ANY REPRODUCTION
IN PART OR AS A WHOLE

WITHOUT THE WRITTEN PERMISSION OF
COSI IS PROHIBITED.

NOTES:

1. REMOVE ALL BURRS
2. CHAMFER SHARP EDGES

WEIGHT:
SHEET 1 OF 1

MFG APPR.

ENG APPR.

CHECKED

DRAWN

DATENAME
DIMENSIONS ARE IN INCHES

TOLERANCES UNLESS SPECIFIED:
FRACTIONAL 1/32
ANGULAR: MACH 1° BEND 2°
TWO PLACE DECIMAL .010
THREE PLACE DECIMAL .005

DO NOT SCALE DRAWING

63
FINISH UNLESS SPECIFIED

A
DWG. NAMESIZE

SCALE:1:2

UNIVERSITY OF ALBERTA

17-4 STAINLESS STEEL
MATERIAL

118

8.50
6.50 BCD

8 X .906 THRU.562- .002
+.000 THRU

A A

1.
62

5

45° TYP

.06 .05 BOTH ENDS

SECTION A-A

1616

SIGNATURE

02-APR-08

HYDRAULIC PISTON FLANGE

M. EVANS
DEPARTMENT OF

MECHANICAL ENGINEERING

4-9 MECH. ENG. BLDG.
EDMONTON, ALBERTA

T6G 2G8
PROPRIETARY AND CONFIDENTIAL
THE INFORMATION CONTAINED IN THIS

DRAWING IS THE SOLE PROPERTY OF THE
IMPERIAL OIL CENTRE FOR OIL SANDS

INNOVATION (COSI). ANY REPRODUCTION
IN PART OR AS A WHOLE

WITHOUT THE WRITTEN PERMISSION OF
COSI IS PROHIBITED.

NOTES:

1. REMOVE ALL BURRS
2. CHAMFER SHARP EDGES

WEIGHT:
SHEET 1 OF 1

MFG APPR.

ENG APPR.

CHECKED

DRAWN

DATENAME
DIMENSIONS ARE IN INCHES

TOLERANCES UNLESS SPECIFIED:
FRACTIONAL 1/32
ANGULAR: MACH 1° BEND 2°
TWO PLACE DECIMAL .010
THREE PLACE DECIMAL .005

DO NOT SCALE DRAWING

63
FINISH UNLESS SPECIFIED

A
DWG. NAMESIZE

SCALE:1:2

UNIVERSITY OF ALBERTA

17-4 STAINLESS STEEL
MATERIAL

119

1/4-20 UNC .500
6X .201 .650

8.50

A A

3.750 H7/h6

.250 R.025 MIN
4.750 H7/h6

1.625

4.250

SECTION A-A

SIGNATURE

02-APR-08

PISTON FLANGE RETROFIT

M. EVANS
DEPARTMENT OF

MECHANICAL ENGINEERING

4-9 MECH. ENG. BLDG.
EDMONTON, ALBERTA

T6G 2G8
PROPRIETARY AND CONFIDENTIAL
THE INFORMATION CONTAINED IN THIS

DRAWING IS THE SOLE PROPERTY OF THE
IMPERIAL OIL CENTRE FOR OIL SANDS

INNOVATION (COSI). ANY REPRODUCTION
IN PART OR AS A WHOLE

WITHOUT THE WRITTEN PERMISSION OF
COSI IS PROHIBITED.

NOTES:

1. REMOVE ALL BURRS
2. CHAMFER SHARP EDGES

WEIGHT:
SHEET 1 OF 1

MFG APPR.

ENG APPR.

CHECKED

DRAWN

DATENAME
DIMENSIONS ARE IN INCHES

TOLERANCES UNLESS SPECIFIED:
FRACTIONAL 1/32
ANGULAR: MACH 1° BEND 2°
TWO PLACE DECIMAL .010
THREE PLACE DECIMAL .005

DO NOT SCALE DRAWING

63
FINISH UNLESS SPECIFIED

A
DWG. NO.SIZE

SCALE:1:2

UNIVERSITY OF ALBERTA

MODIFY EXISTING
MATERIAL

120

6X .266 THRU ALL

R2.125

A A

4.750 H7/h6

2.876 - .000
+.001

1.625

.250

3.512 - .035
+.000

3.243 - .000
+.002

R.010

B

C

SECTION A-A
.182- .000

+.000

R.015

R.005

.104 - .003
+.003

DETAIL B
SCALE 6 : 1

32

.313 - .002
+.003

R.025R.005

DETAIL C
SCALE 4 : 1
(2 PLACES)

32
UNIVERSITY OF ALBERTA

SCALE:3:4

SIZE DWG. NAME

B

MATERIAL

FINISH UNLESS SPECIFIED

STAINLESS STEEL

63
DO NOT SCALE DRAWING

DIMENSIONS ARE IN INCHES
TOLERANCES UNLESS SPECIFIED:
FRACTIONAL 1/32
ANGULAR: MACH 1° BEND 2°
TWO PLACE DECIMAL .010
THREE PLACE DECIMAL .005

NAME DATE

DRAWN

CHECKED

ENG APPR.

MFG APPR.

SHEET 1 OF 1
WEIGHT:

NOTES:

1. REMOVE ALL BURRS
2. CHAMFER SHARP EDGES

THE INFORMATION CONTAINED IN THIS
DRAWING IS THE SOLE PROPERTY OF THE

IMPERIAL OIL CENTRE FOR OIL SANDS
INNOVATION (COSI). ANY REPRODUCTION

IN PART OR AS A WHOLE
WITHOUT THE WRITTEN PERMISSION OF

COSI IS PROHIBITED.

PROPRIETARY AND CONFIDENTIAL

DEPARTMENT OF
MECHANICAL ENGINEERING

4-9 MECH. ENG. BLDG.
EDMONTON, ALBERTA

T6G 2G8

M. EVANS

PISTON FLANGE INSERT

21-OCT-09

SIGNATURE

121

8X .547 THRU ALL
5.373

R2.250

.75

6.875

1.625

R.20 REF

2.873 - .002
+.000

SCORE .002 DEEP
AROUND PISTON

16
16

.020 15°
CHAMFER

SIGNATURE

02-APR-08

HYDRAULIC PISTON

M. EVANS
DEPARTMENT OF

MECHANICAL ENGINEERING

4-9 MECH. ENG. BLDG.
EDMONTON, ALBERTA

T6G 2G8
PROPRIETARY AND CONFIDENTIAL
THE INFORMATION CONTAINED IN THIS

DRAWING IS THE SOLE PROPERTY OF THE
IMPERIAL OIL CENTRE FOR OIL SANDS

INNOVATION (COSI). ANY REPRODUCTION
IN PART OR AS A WHOLE

WITHOUT THE WRITTEN PERMISSION OF
COSI IS PROHIBITED.

NOTES:

1. REMOVE ALL BURRS
2. CHAMFER SHARP EDGES

WEIGHT:
SHEET 1 OF 1

MFG APPR.

ENG APPR.

CHECKED

DRAWN

DATENAME
DIMENSIONS ARE IN INCHES

TOLERANCES UNLESS SPECIFIED:
FRACTIONAL 1/32
ANGULAR: MACH 1° BEND 2°
TWO PLACE DECIMAL .010
THREE PLACE DECIMAL .005

DO NOT SCALE DRAWING

63
FINISH UNLESS SPECIFIED

A
DWG. NO.SIZE

SCALE:1:2

UNIVERSITY OF ALBERTA

STAINLESS STEEL
MATERIAL

122

1-14 UNS 2.000
 .938 1.500

8X .547 THRU ALL

5.50

R2.25

A A

2.50

1.00

R.20 REF

SECTION A-A

.10
45° CHAMFER

 .547 .500

SIGNATURE

02-APR-08

HYDRAULIC PISTON COUPLING

M. EVANS
DEPARTMENT OF

MECHANICAL ENGINEERING

4-9 MECH. ENG. BLDG.
EDMONTON, ALBERTA

T6G 2G8
PROPRIETARY AND CONFIDENTIAL
THE INFORMATION CONTAINED IN THIS

DRAWING IS THE SOLE PROPERTY OF THE
IMPERIAL OIL CENTRE FOR OIL SANDS

INNOVATION (COSI). ANY REPRODUCTION
IN PART OR AS A WHOLE

WITHOUT THE WRITTEN PERMISSION OF
COSI IS PROHIBITED.

NOTES:

1. REMOVE ALL BURRS
2. CHAMFER SHARP EDGES

WEIGHT:
SHEET 1 OF 1

MFG APPR.

ENG APPR.

CHECKED

DRAWN

DATENAME
DIMENSIONS ARE IN INCHES

TOLERANCES UNLESS SPECIFIED:
FRACTIONAL 1/32
ANGULAR: MACH 1° BEND 2°
TWO PLACE DECIMAL .010
THREE PLACE DECIMAL .005

DO NOT SCALE DRAWING

63
FINISH UNLESS SPECIFIED

A
DWG. NO.SIZE

SCALE:1:2

UNIVERSITY OF ALBERTA

STAINLESS STEEL
MATERIAL

123

2 x .9061.031 THRU

A A

10
.1

40
-.

00
5

+.
00

0
1.

00

6.500

3.250

SECTION A-A

1.5" SCHEDULE
160 STANDARD
PIPE

1/4 TYP

SIGNATURE

02-APR-08

CHAMBER ANCHOR

M. EVANS
DEPARTMENT OF

MECHANICAL ENGINEERING

4-9 MECH. ENG. BLDG.
EDMONTON, ALBERTA

T6G 2G8
PROPRIETARY AND CONFIDENTIAL
THE INFORMATION CONTAINED IN THIS

DRAWING IS THE SOLE PROPERTY OF THE
IMPERIAL OIL CENTRE FOR OIL SANDS

INNOVATION (COSI). ANY REPRODUCTION
IN PART OR AS A WHOLE

WITHOUT THE WRITTEN PERMISSION OF
COSI IS PROHIBITED.

NOTES:

1. REMOVE ALL BURRS
2. CHAMFER SHARP EDGES
3. WELD PIPE TO CROSS BAR

WEIGHT:
SHEET 1 OF 1

MFG APPR.

ENG APPR.

CHECKED

DRAWN

DATENAME
DIMENSIONS ARE IN INCHES

TOLERANCES UNLESS SPECIFIED:
FRACTIONAL 1/32
ANGULAR: MACH 1° BEND 2°
TWO PLACE DECIMAL .010
THREE PLACE DECIMAL .005

DO NOT SCALE DRAWING

63
FINISH UNLESS SPECIFIED

A
DWG. NO.SIZE

SCALE:1:3

UNIVERSITY OF ALBERTA

STEEL
MATERIAL

124

4X .797 THRU ALL

60° APART
6X .547 THRU ALL

15.50 13.50

9.00

5.50 THRU

R4.00

CL

19.00
1.50

CL

SIGNATURE

02-APR-08

TENSILE TESTING MACHINE
 MOUNTING PLATE

M. EVANS
DEPARTMENT OF

MECHANICAL ENGINEERING

4-9 MECH. ENG. BLDG.
EDMONTON, ALBERTA

T6G 2G8
PROPRIETARY AND CONFIDENTIAL
THE INFORMATION CONTAINED IN THIS

DRAWING IS THE SOLE PROPERTY OF THE
IMPERIAL OIL CENTRE FOR OIL SANDS

INNOVATION (COSI). ANY REPRODUCTION
IN PART OR AS A WHOLE

WITHOUT THE WRITTEN PERMISSION OF
COSI IS PROHIBITED.

NOTES:

1. REMOVE ALL BURRS
2. CHAMFER SHARP EDGES

WEIGHT:
SHEET 1 OF 1

MFG APPR.

ENG APPR.

CHECKED

DRAWN

DATENAME
DIMENSIONS ARE IN INCHES

TOLERANCES UNLESS SPECIFIED:
FRACTIONAL 1/32
ANGULAR: MACH 1° BEND 2°
TWO PLACE DECIMAL .010
THREE PLACE DECIMAL .005

DO NOT SCALE DRAWING

63
FINISH UNLESS SPECIFIED

A
DWG. NO.SIZE

SCALE:1:5

UNIVERSITY OF ALBERTA

VARIOUS
MATERIAL

125

SCALE 1:10

ITEM NO. PART NUMBER DESCRIPTION QTY.
1 Frame 2" x 1/4" Standard Square Tube 1
2 Frame Table 1
3 Support Clamp

Base 2
4 Support Clamp Top 2

5 Support Clamp End
Plate 2

6 3-8_16 Socket Head
Cap Screw McMaster-Carr #92196A622 8

7 Spring Plunger McMaster-Carr #94975A411 2
8 Table Support 2

2

4

5

1

3

7

6

8

24
.2

5

19.015.5

27.5

12.50

 2°

NOTES:

THREE PLACE DECIMAL

2. CHAMFER SHARP EDGESINNOVATION (COSI). ANY REPRODUCTION

DATE

 .010

3. WELD LOWER SUPPORT CLAMPS TO FRAME

IMPERIAL OIL CENTRE FOR OIL SANDS

UNIVERSITY OF ALBERTA
CHECKED

DWG. NAME

MFG APPR.

NAME

63

MATERIAL
STEEL

B
FINISH UNLESS SPECIFIED

 .005
ENG APPR.

SIZE

DRAWN

SHEET 1 OF 1
WEIGHT:

DO NOT SCALE DRAWING

1. REMOVE ALL BURRS

IN PART OR AS A WHOLE

TWO PLACE DECIMAL

5. PAINT COMPLETED ASSEMBLY
WITHOUT THE WRITTEN PERMISSION OF

COSI IS PROHIBITED.

PROPRIETARY AND CONFIDENTIAL

SCALE:1:5
4. WELD TABLE TO FRAME

DIMENSIONS ARE IN INCHES
TOLERANCES UNLESS SPECIFIED:
FRACTIONAL 1/32
ANGULAR: MACH 1° BEND

THE INFORMATION CONTAINED IN THIS
DRAWING IS THE SOLE PROPERTY OF THE

DEPARTMENT OF
MECHANICAL ENGINEERING

4-9 MECH. ENG. BLDG.
EDMONTON, ALBERTA

T6G 2G8

17-JUN-08M. EVANS

FRAME ASSEMBLY

SIGNATURE

126

15.5

13.5

A CL
CL

7.0

25
.0

19.0

9.5

2.
00

 R
EF

2.00 REF

.25 REF

DETAIL A
SCALE 1 : 1.5

4X .797 THRU ALL

4X .531 2.000

13
.5

0

9.00

13.0

UNIVERSITY OF ALBERTA

SCALE:1:8

SIZE DWG. NO.

B

MATERIAL

FINISH UNLESS SPECIFIED

2" x 1/4" SQUARE STEEL TUBE

-
DO NOT SCALE DRAWING

DIMENSIONS ARE IN INCHES
TOLERANCES UNLESS SPECIFIED:
FRACTIONAL 1/32
ANGULAR: MACH 1° BEND 2°
TWO PLACE DECIMAL .010
THREE PLACE DECIMAL .005

NAME DATE

DRAWN

CHECKED

ENG APPR.

MFG APPR.

SHEET 1 OF 1
WEIGHT:

NOTES:

1. WELD TOGETHER
2. REMOVE ALL BURRS
3. CHAMFER SHARP EDGES
4. PAINT GREY

THE INFORMATION CONTAINED IN THIS
DRAWING IS THE SOLE PROPERTY OF THE

IMPERIAL OIL CENTRE FOR OIL SANDS
INNOVATION (COSI). ANY REPRODUCTION

IN PART OR AS A WHOLE
WITHOUT THE WRITTEN PERMISSION OF

COSI IS PROHIBITED.

PROPRIETARY AND CONFIDENTIAL

DEPARTMENT OF
MECHANICAL ENGINEERING

4-9 MECH. ENG. BLDG.
EDMONTON, ALBERTA

T6G 2G8

M. EVANS

FRAME BODY

02-APR-08

SIGNATURE

127

2. CHAMFER SHARP EDGES

SCALE:1:5

SIZE

UNIVERSITY OF ALBERTA

A
1. REMOVE ALL BURRS T6G 2G8

DRAWING IS THE SOLE PROPERTY OF THE

INNOVATION (COSI). ANY REPRODUCTION

NAME

STEEL
FINISH UNLESS SPECIFIED

63
THE INFORMATION CONTAINED IN THIS

NOTES:

DEPARTMENT OF

IN PART OR AS A WHOLE

DWG. NAME

WEIGHT:
SHEET 1 OF 1

MFG APPR.

ENG APPR.

CHECKED

DRAWN

DATE

WITHOUT THE WRITTEN PERMISSION OF
COSI IS PROHIBITED. DO NOT SCALE DRAWING

MECHANICAL ENGINEERING

4-9 MECH. ENG. BLDG.

IMPERIAL OIL CENTRE FOR OIL SANDS

EDMONTON, ALBERTA

 .005

PROPRIETARY AND CONFIDENTIAL

DIMENSIONS ARE IN INCHES

TOLERANCES UNLESS SPECIFIED:
FRACTIONAL 1/32
ANGULAR: MACH 1° BEND 2°
TWO PLACE DECIMAL .010
THREE PLACE DECIMAL

MATERIAL

22-JUN-08

FRAME TABLE

SIGNATURE

M. EVANS

11
.9

0
8.

84

16.0

 THRU

13.11

4 PLACES
0.44

R2.0 TYP.

0.
50

45°

0.
10

 T
YP

.

128

.397 THRU
(4 PLACES)

2.
30

1.
50

1.80

R.40 TYP

2.60

45° TYP

.0
6

SIGNATURE

02-APR-08

TRUNNION END CAP

M. EVANS
DEPARTMENT OF

MECHANICAL ENGINEERING

4-9 MECH. ENG. BLDG.
EDMONTON, ALBERTA

T6G 2G8
PROPRIETARY AND CONFIDENTIAL
THE INFORMATION CONTAINED IN THIS

DRAWING IS THE SOLE PROPERTY OF THE
IMPERIAL OIL CENTRE FOR OIL SANDS

INNOVATION (COSI). ANY REPRODUCTION
IN PART OR AS A WHOLE

WITHOUT THE WRITTEN PERMISSION OF
COSI IS PROHIBITED.

NOTES:

1. REMOVE ALL BURRS
2. CHAMFER SHARP EDGES

WEIGHT:
SHEET 1 OF 1

MFG APPR.

ENG APPR.

CHECKED

DRAWN

DATENAME
DIMENSIONS ARE IN INCHES

TOLERANCES UNLESS SPECIFIED:
FRACTIONAL 1/32
ANGULAR: MACH 1° BEND 2°
TWO PLACE DECIMAL .010
THREE PLACE DECIMAL .005

DO NOT SCALE DRAWING

63
FINISH UNLESS SPECIFIED

A
DWG. NO.SIZE

SCALE:1:1

UNIVERSITY OF ALBERTA

STEEL
MATERIAL

129

3.00

1.
25

1.80

.4
50

1.520 3/8-16 TAPPED HOLE
(2 PLACES)

1.
00

45
° T

YP
.0

6
TY

P

.5
0

SIGNATURE

02-APR-08

TRUNNION BASE

M. EVANS
DEPARTMENT OF

MECHANICAL ENGINEERING

4-9 MECH. ENG. BLDG.
EDMONTON, ALBERTA

T6G 2G8
PROPRIETARY AND CONFIDENTIAL
THE INFORMATION CONTAINED IN THIS

DRAWING IS THE SOLE PROPERTY OF THE
IMPERIAL OIL CENTRE FOR OIL SANDS

INNOVATION (COSI). ANY REPRODUCTION
IN PART OR AS A WHOLE

WITHOUT THE WRITTEN PERMISSION OF
COSI IS PROHIBITED.

NOTES:

1. REMOVE ALL BURRS
2. CHAMFER SHARP EDGES

WEIGHT:
SHEET 1 OF 1

MFG APPR.

ENG APPR.

CHECKED

DRAWN

DATENAME
DIMENSIONS ARE IN INCHES

TOLERANCES UNLESS SPECIFIED:
FRACTIONAL 1/32
ANGULAR: MACH 1° BEND 2°
TWO PLACE DECIMAL .010
THREE PLACE DECIMAL .005

DO NOT SCALE DRAWING

63
FINISH UNLESS SPECIFIED

A
DWG. NO.SIZE

SCALE:1:1

UNIVERSITY OF ALBERTA

STEEL
MATERIAL

130

3.00

1.
00

45° TYP.0
6

TY
P

.5
0

3/8-16 TAPPED HOLE THRU

1.
58

5

1.80

.7
0

1.50
R1.13 TYP

1.52

3/8-16 TAPPED HOLE
(2 PLACES)

SIGNATURE

02-APR-08

TRUNNION TOP CAP

M. EVANS
DEPARTMENT OF

MECHANICAL ENGINEERING

4-9 MECH. ENG. BLDG.
EDMONTON, ALBERTA

T6G 2G8
PROPRIETARY AND CONFIDENTIAL
THE INFORMATION CONTAINED IN THIS

DRAWING IS THE SOLE PROPERTY OF THE
IMPERIAL OIL CENTRE FOR OIL SANDS

INNOVATION (COSI). ANY REPRODUCTION
IN PART OR AS A WHOLE

WITHOUT THE WRITTEN PERMISSION OF
COSI IS PROHIBITED.

NOTES:

1. REMOVE ALL BURRS
2. CHAMFER SHARP EDGES

WEIGHT:
SHEET 1 OF 1

MFG APPR.

ENG APPR.

CHECKED

DRAWN

DATENAME
DIMENSIONS ARE IN INCHES

TOLERANCES UNLESS SPECIFIED:
FRACTIONAL 1/32
ANGULAR: MACH 1° BEND 2°
TWO PLACE DECIMAL .010
THREE PLACE DECIMAL .005

DO NOT SCALE DRAWING

63
FINISH UNLESS SPECIFIED

A
DWG. NO.SIZE

SCALE:1:1

UNIVERSITY OF ALBERTA

STEEL
MATERIAL

131

132

Appendix G Monitoring and Control Software Source Code

The following code was written in the National Instruments LabWindows/CVI 9.0 programming

environment. It includes the main function, equipment initialization functions, automated

experiment procedure, student coded instrument functions, and all GUI setup. The text size has

been reduced to conserve space.

 //---
 //
 // A BASIC log and disply program to communicate with a
 // NATIONAL INSTRUMENTS USB DAQ unit and up to 3 serial
 // devices
 //
 // Written by: Marc D. Evans
 // University of Alberta
 // Last Updated: June 2010
 //
 // Based on a code framework written by Dr. David S. Nobes
 //
 //---

 #include "Monitoring and Control Program.h"
 #include <NIDAQmx.h>
 #include <formatio.h>
 #include <stdio.h>
 #include <rs232.h>
 #include <utility.h>
 #include <ansi_c.h>
 #include <analysis.h>
 #include <cvirte.h>
 #include <userint.h>
 #include <ctype.h>
 #include "Monitoring and Control Program_Declare.h"
 #include "Monitoring and Control Program.h"
 #include "NIDAQmx.h"
 #include "DAQmxIOctrl.h"
 #include "visatype.h"
 #include "tkafg3k.h"

 ViSession tkafg3k;

 #define DAQmxErrChk(functionCall) if(DAQmxFailed(DAQerror=(functionCall))) goto Error; else

 // DAQ Globals
 int32 DAQerror=0;
 TaskHandle taskHandle=0;
 char chan[256];
 int32 DAQrate;
 uInt32 DAQsampsPerChan;
 int32 DAQnumRead;
 uInt32 DAQnumChannels;
 float64 *DAQdata=NULL;
 float64 *DAQArray_Out=NULL;
 int DAQlog;
 char DAQerrBuff[2048]={'\0'};
 double DAQoutMean=0;
 int DAQ_Task_Started=0;

 /**/
 // 888b d888 d8888 8888888 888b 888 d88P 8888888b. d8888 888b 888 8888888888 888 .d8888b.
 // 8888b d8888 d88888 888 8888b 888 d88P 888 Y88b d88888 8888b 888 888 888 d88P Y88b
 // 88888b.d88888 d88P888 888 88888b 888 d88P 888 888 d88P888 88888b 888 888 888 Y88b.
 // 888Y88888P888 d88P 888 888 888Y88b 888 d88P 888 d88P d88P 888 888Y88b 888 8888888 888 "Y888b.
 // 888 Y888P 888 d88P 888 888 888 Y88b888 d88P 8888888P" d88P 888 888 Y88b888 888 888 "Y88b.
 // 888 Y8P 888 d88P 888 888 888 Y88888 d88P 888 d88P 888 888 Y88888 888 888 "888
 // 888 " 888 d8888888888 888 888 Y8888 d88P 888 d8888888888 888 Y8888 888 888 Y88b d88P
 // 888 888 d88P 888 8888888 888 Y888 d88P 888 d88P 888 888 Y888 8888888888 88888888 "Y8888P"
 /**/

 //**
 // main : MCP main function
 //**
 int main (int argc, char *argv[])
 {
 if (InitCVIRTE (0, argv, 0) == 0)
 return -1; /* out of memory */
 if ((panelHandle = LoadPanel (0, "Monitoring and Control Program.uir", PANEL)) < 0)
 return -1;
 // Set the panel variables
 g_Handle = LoadPanel (0, "Monitoring and Control Program.uir", G_SETUP);
 com_Handle = LoadPanel (0, "Monitoring and Control Program.uir", COM);
 a_Handle = LoadPanel (0, "Monitoring and Control Program.uir", ABOUT);
 s_Handle = LoadPanel (0, "Monitoring and Control Program.uir", SAVE_Con);

 DisplayPanel (panelHandle);
 DSN_Init();
 DSN_Init2();
 SetSleepPolicy (VAL_SLEEP_MORE);

 // Maximise the panel
 //SetPanelAttribute (panelHandle, ATTR_WINDOW_ZOOM, VAL_MAXIMIZE);
 RunUserInterface ();
 DSN_Update_Graphics();

 DiscardPanel (panelHandle);
 CloseCVIRTE ();
 return 0;
 }

 //**
 // ExitCallback : Exit menu
 //**
 void CVICALLBACK ExitCallback (int menuBar, int menuItem, void *callbackData, int panel)

 {
 DisplayPanel (s_Handle);
 }

 //**
 // QuitCallback : Main panel quit
 //**
 int CVICALLBACK QuitCallback (int panel, int control, int event,
 void *callbackData, int eventData1, int eventData2)
 {
 switch (event)
 {
 case EVENT_COMMIT:
 DisplayPanel (s_Handle);
 break;
 case EVENT_RIGHT_CLICK:

 break;

133

 }
 return 0;
 }
 //**
 // DSN_MainPanelQuit: Main panel quit function
 //**
 void DSN_MainPanelQuit(void)
 {int i;

 QuitUserInterface (0);

 return;
 }
 //**
 // Save_MCP_Config: Save the current configuration on exit
 //**
 int CVICALLBACK Save_MCP_Config (int panel, int control, int event,
 void *callbackData, int eventData1, int eventData2)
 {
 switch (event)
 {
 case EVENT_COMMIT:
 switch (control)
 {
 case SAVE_Con_SAVE_YES:
 DSN_Save_Vars();
 DSN_Save_Config(0);
 HidePanel (s_Handle);
 DSN_MainPanelQuit();
 break;
 case SAVE_Con_SAVE_NO:
 HidePanel (s_Handle);
 DSN_MainPanelQuit();
 break;
 case SAVE_Con_SAVE_CANCEL:
 HidePanel (s_Handle);
 break;
 }
 break;
 case EVENT_RIGHT_CLICK:

 break;
 }
 return 0;
 }
 //**
 // SHOW AND CLOSE CALLBACKS FOR OTHER PANELS
 //**

 //**
 // GRAPH SETUP
 //**
 int CVICALLBACK SHOW_Graphs (int panel, int control, int event,
 void *callbackData, int eventData1, int eventData2)
 {
 switch (event)
 {
 case EVENT_COMMIT:

 break;
 case EVENT_RIGHT_CLICK:
 DisplayPanel (g_Handle);
 break;
 }
 return 0;
 }

 int CVICALLBACK CLOSE_Graphs (int panel, int control, int event,
 void *callbackData, int eventData1, int eventData2)
 {
 switch (event)
 {
 case EVENT_COMMIT:
 HidePanel (g_Handle);
 break;
 case EVENT_RIGHT_CLICK:

 break;
 }
 return 0;
 }

 //**
 // ABOUT
 //**
 void CVICALLBACK SHOW_About (int menuBar, int menuItem, void *callbackData,
 int panel)
 {
 DisplayPanel (a_Handle);
 }

 int CVICALLBACK CLOSE_About (int panel, int control, int event,
 void *callbackData, int eventData1, int eventData2)
 {
 switch (event)
 {
 case EVENT_COMMIT:
 HidePanel (a_Handle);
 break;
 case EVENT_RIGHT_CLICK:

 break;
 }
 return 0;
 }
 //**
 // COMMUNICATIONS SETUP
 //**
 void CVICALLBACK SHOW_Com (int menuBar, int menuItem, void *callbackData,
 int panel)
 {
 DisplayPanel (com_Handle);
 }

 int CVICALLBACK CLOSE_Com (int panel, int control, int event,

134

 void *callbackData, int eventData1, int eventData2)
 {
 switch (event)
 {
 case EVENT_COMMIT:
 HidePanel (com_Handle);
 break;
 case EVENT_RIGHT_CLICK:

 break;
 }
 return 0;
 }

 /**/
 // d8888 .d8888b. .d88888b. 888 888 8888888 .d8888b. 8888888 88888888888 8888888 .d88888b. 888b 888
 // d88888 d88P Y88b d88P" "Y88b 888 888 888 d88P Y88b 888 888 888 d88P" "Y88b 8888b 888
 // d88P888 888 888 888 888 888 888 888 Y88b. 888 888 888 888 888 88888b 888
 // d88P 888 888 888 888 888 888 888 "Y888b. 888 888 888 888 888 888Y88b 888
 // d88P 888 888 888 888 888 888 888 "Y88b. 888 888 888 888 888 888 Y88b888
 // d88P 888 888 888 888 Y8b 888 888 888 888 "888 888 888 888 888 888 888 Y88888
 // d8888888888 Y88b d88P Y88b.Y8b88P Y88b. .d88P 888 Y88b d88P 888 888 888 Y88b. .d88P 888 Y8888
 // d88P 888 "Y8888P" "Y888888" "Y88888P" 8888888 "Y8888P" 8888888 888 8888888 "Y88888P" 888 Y888
 /**/

 //**
 // DSN_SHIFT_DAQ : Will step data along an array
 // : For all data that can be plotted
 //**
 void DSN_SHIFT_DAQ(void)
 {
 Shift (step, NUM, 1, step);
 Shift (S1A, NUM, 1, S1A);
 Shift (S2A, NUM, 1, S2A);
 Shift (S3A, NUM, 1, S3A);
 Shift (S4A, NUM, 1, S4A);
 Shift (S5A, NUM, 1, S5A);
 Shift (S6A, NUM, 1, S6A);
 //Shift (S7A, NUM, 1, S7A); //*** Omit while S7A is External Bath Probe
 Current_Radial_Temps[1] = S8A[0];
 Shift (S8A, NUM, 1, S8A);
 Shift (S9A, NUM, 1, S9A);
 Shift (S1B, NUM, 1, S1B);
 Shift (S2B, NUM, 1, S2B);
 Shift (S3B, NUM, 1, S3B);
 Shift (S4B, NUM, 1, S4B);
 Shift (S5B, NUM, 1, S5B);
 Shift (S6B, NUM, 1, S6B);
 Current_Radial_Temps[2] = S7B[0];
 Shift (S7B, NUM, 1, S7B);
 Current_Radial_Temps[0] = S8B[0];
 Shift (S8B, NUM, 1, S8B);
 Shift (S9B, NUM, 1, S9B);
 Shift (Piezo_Temp, NUM, 1, Piezo_Temp);
 Shift (Logging_Trig_Array, NUM, 1, Logging_Trig_Array);

 return;
 }

 //**
 // DSN_SHIFT_Slow : Will step data along an array
 // : For all data that can be plotted
 //**
 void DSN_SHIFT_Slow(int instrument)
 {
 switch(instrument)
 {
 case 0: // Bath Temperature Array
 Shift (Bath_Temp, NUM, 1, Bath_Temp);
 break;
 case 1: // Bath Setpoint Array
 Shift (Bath_Setpoint, NUM, 1, Bath_Setpoint);
 break;
 case 2: // Average Live Viscosity Array
 Shift (Ave_L_Visc, NUM, 1, Ave_L_Visc);
 break;
 case 3: // Average Temperature Corrected Viscosity Array
 Shift (Ave_TC_Visc, NUM, 1, Ave_TC_Visc);
 break;
 case 4: // Bulb Temperature Array
 Shift (Bulb_Temp, NUM, 1, Bulb_Temp);
 break;
 case 5: // Pressure Controller Setpoint
 Shift (Stat_P_Setpoint, NUM, 1, Stat_P_Setpoint);
 break;
 case 6: // External Bath Probe
 Current_Radial_Temps[3] = S7A[0];
 Shift (S7A, NUM, 1, S7A); // Only while S7A is External Bath Probe
 break;
 case 7: // PACE5000 Pressure
 Shift (PACE_Pressure, NUM, 1, PACE_Pressure);
 break;
 }

 return;
 }

 /**/
 /* Slow_ThreadFunction (): - Separate Thread for Slow Components */
 /**/
 int CVICALLBACK Slow_ThreadFunction (void *functionData)
 { double T1,T2,Hz;

 int i, j, k = 0;
 int count = 0;

 /* Start a loop that will process events for this thread */
 while (Slow_quitflag == 1)
 {
 ProcessSystemEvents ();

 //--

 if(Is_COM1) // Cole Parmer Fluid Bath

135

 {

 FlushInQ (SP_comport);
 FlushOutQ(SP_comport);

 DSN_Poll_Bath_Temp();
 DSN_Poll_Bath_Setpoint();
 DSN_Poll_Bath_Probe();

 GetCtrlVal(panelHandle, PANEL_S7A, &Probe_Temp_Trigger);
 Temperature_Error = Probe_Temp_Trigger - wb_setpoint; // Error

 }
 //--

 if(Is_COM2) // Viscojet Viscometer
 {

 FlushInQ (SP2_comport);
 FlushOutQ(SP2_comport);

 DSN_Poll_Viscosity();
 DSN_Poll_Bulb_Temperature();

 }
 //--

 if(Is_COM3) // GE PACE5000 Pressure Controller
 {

 DSN_Poll_Pressure_Setpoint();
 DSN_Poll_Current_Pressure();

 Pressure_Error = (PACE_Pressure_Global - sp_setpoint)/sp_setpoint; // Error

 }
 //--

 ProcessSystemEvents ();

 //--
 }
 return 0;
 }

 /**/
 /* DAQThreadFunction (): - Separate Thread for DAQ */
 /* - Logs to file/graphs */
 /**/
 int CVICALLBACK DAQThreadFunction (void *functionData)
 { double T1,T2,Hz;

 double TEMP[10];
 int i, j, k = 0;
 int count = 0;

 /* Start a loop that will process events for this thread */
 while (DAQquitflag == 1)
 { ++SAMPLES;
 T1 = Timer (); // Start TIME

 ProcessSystemEvents ();

 //--

 step[0] = Timer (); // Get Time

 if(Is_DAQ)
 {
 DSN_Run_DAQ();
 Logging_Trig_Array[0] = Logging_Trigger;
 }

 //--

 ProcessSystemEvents ();
 SetCtrlVal(panelHandle, PANEL_SAMPLES, SAMPLES);

 //--

 if(Is_Log)
 DSN_LogFile(); // Log to File
 ProcessSystemEvents ();

 CmtGetLock (DAQ_lockHandle);
 if(Is_Graph)
 DSN_Graph(); // Do Graphing
 CmtReleaseLock (DAQ_lockHandle);

 DSN_SHIFT_DAQ(); // SHIFT all DAQ arrays
 //--

 }
 return 0;
 }

 //***
 // LOG_ON_OFF : Check what ports to run and whether to log to a file
 // : Check current experiment configuration
 //***
 int CVICALLBACK LOG_ON_OFF (int panel, int control, int event,
 void *callbackData, int eventData1, int eventData2)
 {
 switch (event)
 {
 case EVENT_COMMIT:
 GetCtrlVal(panelHandle, PANEL_LOG_COM3, &Is_COM3); // Check Devices to Log
 GetCtrlVal(panelHandle, PANEL_LOG_COM1, &Is_COM1);
 GetCtrlVal(panelHandle, PANEL_LOG_COM2, &Is_COM2);
 GetCtrlVal(panelHandle, PANEL_LOG_DAQ, &Is_DAQ);
 GetCtrlVal(panelHandle, PANEL_LOG_FUNCTION_GEN, &Is_Function_Gen);
 GetCtrlVal(panelHandle, PANEL_LOG_Graph, &Is_Graph);
 GetCtrlVal(panelHandle, PANEL_LOG_LOGtoFile, &Is_Log);

136

 GetCtrlVal(panelHandle, PANEL_EXP_TYPE, &Exp_Type); // Check Experiment Type
 GetCtrlVal(panelHandle, PANEL_RUN_MODE, &Run_Mode); // Check Control Type

 GetCtrlVal(panelHandle, PANEL_SENSOR_SELECT_1A, &Is_S1A); // Check Sensors to Log
 GetCtrlVal(panelHandle, PANEL_SENSOR_SELECT_1B, &Is_S1B); // "On" means Pressure Transducer
 GetCtrlVal(panelHandle, PANEL_SENSOR_SELECT_2A, &Is_S2A); // "Off" means RTD
 GetCtrlVal(panelHandle, PANEL_SENSOR_SELECT_2B, &Is_S2B);
 GetCtrlVal(panelHandle, PANEL_SENSOR_SELECT_3A, &Is_S3A);
 GetCtrlVal(panelHandle, PANEL_SENSOR_SELECT_3B, &Is_S3B);
 GetCtrlVal(panelHandle, PANEL_SENSOR_SELECT_4A, &Is_S4A);
 GetCtrlVal(panelHandle, PANEL_SENSOR_SELECT_4B, &Is_S4B);
 GetCtrlVal(panelHandle, PANEL_SENSOR_SELECT_5A, &Is_S5A);
 GetCtrlVal(panelHandle, PANEL_SENSOR_SELECT_5B, &Is_S5B);
 GetCtrlVal(panelHandle, PANEL_SENSOR_SELECT_6A, &Is_S6A);
 GetCtrlVal(panelHandle, PANEL_SENSOR_SELECT_6B, &Is_S6B);
 GetCtrlVal(panelHandle, PANEL_SENSOR_SELECT_7A, &Is_S7A);
 GetCtrlVal(panelHandle, PANEL_SENSOR_SELECT_7B, &Is_S7B);
 GetCtrlVal(panelHandle, PANEL_SENSOR_SELECT_8A, &Is_S8A);
 GetCtrlVal(panelHandle, PANEL_SENSOR_SELECT_8B, &Is_S8B);
 GetCtrlVal(panelHandle, PANEL_SENSOR_SELECT_9A, &Is_S9A);
 GetCtrlVal(panelHandle, PANEL_SENSOR_SELECT_9B, &Is_S9B);

 GetCtrlVal(panelHandle, PANEL_Amp_On_1, &Amp_On_1);
 GetCtrlVal(panelHandle, PANEL_Amp_On_2, &Amp_On_2);
 GetCtrlVal(panelHandle, PANEL_Amp_On_3, &Amp_On_3);
 GetCtrlVal(panelHandle, PANEL_Amp_On_4, &Amp_On_4);
 GetCtrlVal(panelHandle, PANEL_Amp_On_5, &Amp_On_5);

 DSN_Get_Sensor_Positions(); // Retrieve Sensor Radial Positions from Screen

 DSN_Update_Graphics(); // Update On-screen Graphics

 break;
 case EVENT_RIGHT_CLICK:

 break;
 }
 return 0;
 }

 //**
 // START_STOP : Start/Stop control of Timer Loop
 // : Use a separate thread
 //**
 int CVICALLBACK START_STOP (int panel, int control, int event,
 void *callbackData, int eventData1, int eventData2)
 { int test, test2;
 int i,j,delay;

 switch (event)
 {
 case EVENT_COMMIT:
 DSN_Save_Vars();
 GetCtrlVal(panelHandle, PANEL_START_STOP, &test2);
 SAMPLES = 0;
 SetCtrlVal(panelHandle, PANEL_SAMPLES, SAMPLES);

 if(!test2) // Stop Instruments
 {

 DSN_Update_Graphics();

 //--------------
 // STOP DAQ
 //--------------
 if(Is_DAQ)
 {
 DAQquitflag = 0;
 Delay(1);

 // Turn off the Logging Trigger
 Logging_Trigger = 0;
 SetCtrlVal(panelHandle, PANEL_LOGGING_TRIGGER_LED,0);

 DAQmxStopTask(taskHandle);
 DAQmxClearTask(taskHandle);
 DAQ_Task_Started = 0;

 if(DAQdata)
 free(DAQdata);
 if(DAQArray_Out)
 free(DAQArray_Out);

 CmtReleaseThreadPoolFunctionID (DEFAULT_THREAD_POOL_HANDLE, DAQthreadID);
 CmtReleaseThreadPoolFunctionID (DEFAULT_THREAD_POOL_HANDLE, Slow_threadID);

 Delay(1);
 }

 //--------------------------------------
 // STOP COM 1 - Cole Parmer Fluid Bath
 //--------------------------------------
 if(Is_COM1)
 {
 FlushInQ (SP_comport);
 FlushOutQ(SP_comport);

 DSN_Bath_Power_Off();
 }

 //--------------------------------------
 // STOP COM 3 - GE Pressure Controller
 //--------------------------------------
 if(Is_COM3)
 {
 FlushInQ (SP2_comport);
 FlushOutQ(SP2_comport);

 DSN_Shut_Down_P_Controller();

 Delay(1);

 }
 Delay(1);
 CmtDiscardLock (DAQ_lockHandle);

137

 }

 else // Start Instruments
 {

 //----------------------------------
 // Thread for Slow Instruments
 //----------------------------------

 /* Start a new thread function in the Default Thread Pool */
 Slow_cmtStatus = CmtScheduleThreadPoolFunction (DEFAULT_THREAD_POOL_HANDLE,
 Slow_ThreadFunction, NULL, &Slow_threadID);
 Slow_quitflag = 1;

 // Create a thread lock
 CmtNewLock (NULL, 0, &Slow_lockHandle);

 //--------------------------------------
 // SETUP COM 1 - Cole Parmer Fluid Bath
 //--------------------------------------

 if(Is_COM1)
 {
 FlushInQ (SP_comport);
 FlushOutQ(SP_comport);

 DSN_Bath_Power_On();
 bytes_read = ComRdTerm (SP_comport, read_check, 1, 13); // Read ! from COM Port

 if (bytes_read < 0)
 {
 MessagePopup ("Warning", "Fluid Bath did not Communicate");
 DAQquitflag = 0;
 break;
 }

 Delay(2);
 DSN_Poll_Bath_Setpoint();
 // Updates bath setpoint readout once
 SetCtrlVal(panelHandle, PANEL_WB_SETPOINT, wb_setpoint);
 DSN_Set_Bath_External(); // Set to External Probe
 }

 //--------------------------------------
 // SETUP COM 2 - Viscojet Viscometer
 //--------------------------------------
 if(Is_COM2)
 {
 FlushInQ (SP2_comport);
 FlushOutQ(SP2_comport);

 bytes_read = -1;

 DSN_Poll_Viscosity();

 if (bytes_read < 0)
 {
 MessagePopup ("Warning", "Viscometer did not Communicate");
 DAQquitflag = 0;
 break;
 }
 }

 //---
 // SETUP COM 3 - GE Pressure Controller
 //---
 if(Is_COM3)
 {
 FlushInQ (SP3_comport);
 FlushOutQ(SP3_comport);

 DSN_Initialize_P_Controller();

 }

 //--------------------------------------
 // SETUP Function Generator
 //--------------------------------------
 if(Is_Function_Gen)
 {
 DSN_Init_FuncGen();
 }

 //--------------------------------------
 // SETUP DAQ
 //--------------------------------------
 if(Is_DAQ)
 {
 DSN_Setup_DAQ();
 }

 /* Start a new thread function in the Default Thread Pool */
 DAQcmtStatus = CmtScheduleThreadPoolFunction (DEFAULT_THREAD_POOL_HANDLE,
 DAQThreadFunction, NULL,
 &DAQthreadID);
 DAQquitflag = 1;

 // Create a thread lock
 CmtNewLock (NULL, 0, &DAQ_lockHandle);

 //---
 // Undim Monitored Readouts and Adjust Control Types
 //---
 DSN_Update_Graphics();

 //---
 // Jump Into Control Loop (if Auto Run Mode)
 //---
 if(!Run_Mode)
 {
 if(Exp_Type) // Static Experiment
 {
 // Read in Test Parameters
 GetCtrlVal(panelHandle, PANEL_P_MAX_T, &P_Max_T);

138

 GetCtrlVal(panelHandle, PANEL_P_MIN_T, &P_Min_T);
 GetCtrlVal(panelHandle, PANEL_P_T_INCREMENTS, &P_T_Increments);
 GetCtrlVal(panelHandle, PANEL_P_MAX_SP, &P_Max_SP);
 GetCtrlVal(panelHandle, PANEL_P_MIN_SP, &P_Min_SP);
 GetCtrlVal(panelHandle, PANEL_P_SP_INCREMENTS, &P_SP_Increments);

 // Determine Total Number of Experiment Steps
 Experiment_Steps = (P_T_Increments + 1)*(P_SP_Increments + 1);

 // Repeat the Up-Down Step Program "Num_Cycles" Times
 for(Num_Cycles=0 ; Num_Cycles < 1 ; Num_Cycles++)
 {
 //---------------------------------------
 // Upward Static Experiment Loop:
 //---------------------------------------
 for(Current_Step=0 ; Current_Step <= P_T_Increments ; Current_Step++)
 {
 ProcessSystemEvents();

 //---------------------------------------
 // Step 1 - Set Next Temperature Point
 //---------------------------------------
 // "+ Current..." for Upward Loop
 wb_setpoint = P_Min_T + Current_Step*((P_Max_T - P_Min_T)/P_T_Increments);
 DSN_Set_Bath_Setpoint();

 //---------------------------------------
 // Step 2 - Let Temperature Stabilize
 //---------------------------------------
 while(Temperature_Error > 1 || Temperature_Error < -1)
 {
 ProcessSystemEvents();

 if(wb_setpoint == 0) // Error is undefined at 0
 { // Defined as close enough to "zero"
 if(Probe_Temp_Trigger < 0.1 && Probe_Temp_Trigger > -0.1)
 {
 Temperature_Error = 0;
 }
 }
 }

 // Underdamped system so exits the above loop at first overshoot

 // System is stable once a peak temperature is within the error bounds

 // Initialize Errors so that we enter the loop
 Upwards_Temp_Error = 99999;
 Downwards_Temp_Error = -99999;

 // Collect NUM PANEL_S7A readings
 for(meas_count = 0 ; meas_count < NUM ; meas_count++)
 {
 GetCtrlVal(panelHandle, PANEL_S7A, &S7A_Damping_Array[meas_count]);
 Delay(2);
 }
 // Average the NUM readings
 Mean (S7A_Damping_Array, NUM, &Last_Temperature);
 Delay(2);

 while(Upwards_Temp_Error > 0.01 && Downwards_Temp_Error < -0.01)
 {
 /* Damp out high frequency responses */

 // Clear Damping Array
 Clear1D (S7A_Damping_Array, NUM);
 // Collect NUM PANEL_S7A readings
 for(meas_count = 0 ; meas_count < NUM ; meas_count++)
 {
 GetCtrlVal(panelHandle, PANEL_S7A, &S7A_Damping_Array[meas_count]);
 Delay(2);
 }
 // Average the NUM readings
 Mean (S7A_Damping_Array, NUM, &Latest_Temperature);

 // Compare against the last set of NUM readings to determine increasing or decreasing

 // Temperature is Increasing
 if(Latest_Temperature > Last_Temperature)
 {
 Upwards_Temp_Error = (Latest_Temperature - wb_setpoint)/wb_setpoint;
 }
 // Temperature is Decreasing
 if(Latest_Temperature < Last_Temperature)
 {
 Downwards_Temp_Error = (Latest_Temperature - wb_setpoint)/wb_setpoint;
 }
 // Error is undefined at 0 setpoint
 if(wb_setpoint == 0)
 {
 // Temperature is Increasing
 if(Latest_Temperature > Last_Temperature)
 { // Not a percent
 Upwards_Temp_Error = Latest_Temperature - wb_setpoint;
 }
 // Temperature is Decreasing
 if(Latest_Temperature < Last_Temperature)
 { // Not a percent
 Downwards_Temp_Error = Latest_Temperature - wb_setpoint;
 }
 // Define as close enough to "zero"
 if(Upwards_Temp_Error < 0.1 && Downwards_Temp_Error > -0.1)
 {
 Upwards_Temp_Error = 0;
 Downwards_Temp_Error = 0;
 }
 }

 Last_Temperature = Latest_Temperature;
 ProcessSystemEvents();
 }

 //---------------------------------------
 // Step 3 - Vary Pressure over the Range
 //---------------------------------------

139

 if(Is_COM3)
 {
 for(Pressure_Step=0 ; Pressure_Step <= P_SP_Increments ; Pressure_Step++)
 {
 // Calculate Next Pressure Setpoint
 sp_setpoint = P_Min_SP + Pressure_Step*((P_Max_SP- P_Min_SP)/P_SP_Increments);

 // Send and Adjust to New Setpoint
 DSN_Change_P_Setpoint(sp_setpoint);

 // Initialize Errors so that we enter the loop
 Upwards_Press_Error = 99999;
 Downwards_Press_Error = -99999;
 DSN_Poll_Current_Pressure();
 GetCtrlVal(panelHandle, PANEL_REGULATOR_PRESSURE, &Last_Pressure);
 Delay(2);

 // Let Pressure Stabilize
 while(Upwards_Press_Error > 0.01 && Downwards_Press_Error < -0.01)
 {
 DSN_Poll_Current_Pressure();
 GetCtrlVal(panelHandle, PANEL_REGULATOR_PRESSURE, &Latest_Pressure);

 // Pressure is Increasing
 if(Latest_Pressure > Last_Pressure)
 {
 Upwards_Press_Error = (Latest_Pressure - sp_setpoint)/sp_setpoint;
 }
 // Pressure is Decreasing
 if(Latest_Pressure < Last_Pressure)
 {
 Downwards_Press_Error = (Latest_Pressure - sp_setpoint)/sp_setpoint;
 }
 // Error is undefined at 0 setpoint
 if(sp_setpoint == 0)
 {
 // Pressure is Increasing
 if(Latest_Pressure > Last_Pressure)
 { // Not a percent
 Upwards_Press_Error = Latest_Pressure - sp_setpoint;
 }
 // Pressure is Decreasing
 if(Latest_Pressure < Last_Pressure)
 { // Not a percent
 Downwards_Press_Error = Latest_Pressure - sp_setpoint;
 }
 // Defined as close enough to "zero"
 if(Upwards_Press_Error < 0.1 && Downwards_Press_Error > -0.1)
 {
 Upwards_Press_Error = 0;
 Downwards_Press_Error = 0;
 }
 }

 Last_Pressure = Latest_Pressure;
 ProcessSystemEvents();
 }

 // Turn on Logging Trigger
 Logging_Trigger = 1;
 SetCtrlVal(panelHandle, PANEL_LOGGING_TRIGGER_LED,1);

 // Delay for a time at Setpoint
 for(delay=1 ; delay <= 600 ; delay++)
 {
 Delay(1);
 ProcessSystemEvents ();
 }

 // Turn off the Logging Trigger
 Logging_Trigger = 0;
 SetCtrlVal(panelHandle, PANEL_LOGGING_TRIGGER_LED,0);
 }
 }

 // Vent the System Pressure
 if(Is_COM3)
 {
 DSN_Vent_Pressure();
 }

 //---------------------------------------
 // Step 4 - Update Progress Bar
 //---------------------------------------
 //Percent_Complete = 50*(Current_Step+1)/Experiment_Steps;
 //SetCtrlVal(panelHandle, PANEL_EXP_PROGRESS, Percent_Complete);
 }

 //---------------------------------------
 // Downward Static Experiment Loop:
 //---------------------------------------
 for(Current_Step=0 ; Current_Step <= P_T_Increments ; Current_Step++)
 {
 ProcessSystemEvents ();

 //---------------------------------------
 // Step 1 - Set Next Temperature Point
 //---------------------------------------
 // "- Current..." for Downward Loop
 wb_setpoint = P_Max_T - Current_Step*((P_Max_T - P_Min_T)/P_T_Increments);
 DSN_Set_Bath_Setpoint();

 //---------------------------------------
 // Step 2 - Let Temperature Stabilize
 //---------------------------------------
 while(Temperature_Error > 1 || Temperature_Error < -1)
 {
 ProcessSystemEvents();

 if(wb_setpoint == 0) // Error is undefined at 0
 { // Defined as close enough to "zero"
 if(Probe_Temp_Trigger < 1 && Probe_Temp_Trigger > -1)
 {
 Temperature_Error = 0;

140

 }
 }
 }

 // Underdamped system so exits the above loop at first overshoot
 // System is stable once a peak temperature is within the error bounds

 // Initialize Errors so that we enter the loop
 Upwards_Temp_Error = 99999;
 Downwards_Temp_Error = -99999;

 // Collect NUM PANEL_S7A readings
 for(meas_count = 0 ; meas_count < NUM ; meas_count++)
 {
 GetCtrlVal(panelHandle, PANEL_S7A, &S7A_Damping_Array[meas_count]);
 Delay(2);
 }
 // Average the NUM readings
 Mean (S7A_Damping_Array, NUM, &Last_Temperature);

 Delay(2);

 while(Upwards_Temp_Error > 0.01 && Downwards_Temp_Error < -0.01)
 {
 /* Damp out high frequency responses */

 // Clear Damping Array
 Clear1D (S7A_Damping_Array, NUM);
 // Collect NUM PANEL_S7A readings
 for(meas_count = 0 ; meas_count < NUM ; meas_count++)
 {
 GetCtrlVal(panelHandle, PANEL_S7A, &S7A_Damping_Array[meas_count]);
 Delay(2);
 }
 // Average the NUM readings
 Mean (S7A_Damping_Array, NUM, &Latest_Temperature);

 // Compare against the last set of NUM readings to determine increasing or decreasing

 // Temperature is Increasing
 if(Latest_Temperature > Last_Temperature)
 {
 Upwards_Temp_Error = (Latest_Temperature - wb_setpoint)/wb_setpoint;
 }
 // Temperature is Decreasing
 if(Latest_Temperature < Last_Temperature)
 {
 Downwards_Temp_Error = (Latest_Temperature - wb_setpoint)/wb_setpoint;
 }
 // Error is undefined at 0 setpoint
 if(wb_setpoint == 0)
 {
 // Temperature is Increasing
 if(Latest_Temperature > Last_Temperature)
 {
 Upwards_Temp_Error = Latest_Temperature - wb_setpoint; // Not a percent
 }
 // Temperature is Decreasing
 if(Latest_Temperature < Last_Temperature)
 {
 Downwards_Temp_Error = Latest_Temperature - wb_setpoint;// Not a percent
 }
 // Defined as close enough to "zero"
 if(Upwards_Temp_Error < 0.1 && Downwards_Temp_Error > -0.1)
 {
 Upwards_Temp_Error = 0;
 Downwards_Temp_Error = 0;
 }
 }

 Last_Temperature = Latest_Temperature;
 ProcessSystemEvents();
 }

 //---------------------------------------
 // Step 3 - Vary Pressure over the Range
 //---------------------------------------
 if(Is_COM3)
 {
 for(Pressure_Step=0 ; Pressure_Step <= P_SP_Increments ; Pressure_Step++)
 {
 // Calculate Next Pressure Setpoint
 sp_setpoint = P_Min_SP + Pressure_Step*((P_Max_SP- P_Min_SP)/P_SP_Increments);

 // Send and Adjust to New Setpoint
 DSN_Change_P_Setpoint(sp_setpoint);

 // Initialize Errors so that we enter the loop
 Upwards_Press_Error = 99999;
 Downwards_Press_Error = -99999;
 DSN_Poll_Current_Pressure();
 GetCtrlVal(panelHandle, PANEL_REGULATOR_PRESSURE, &Last_Pressure);
 Delay(2);

 // Let Pressure Stabilize
 while(Upwards_Press_Error > 0.01 && Downwards_Press_Error < -0.01)
 {
 DSN_Poll_Current_Pressure();
 GetCtrlVal(panelHandle, PANEL_REGULATOR_PRESSURE, &Latest_Pressure);

 // Pressure is Increasing
 if(Latest_Pressure > Last_Pressure)
 {
 Upwards_Press_Error = (Latest_Pressure - sp_setpoint)/sp_setpoint;
 }
 // Pressure is Decreasing
 if(Latest_Pressure < Last_Pressure)
 {
 Downwards_Press_Error = (Latest_Pressure - sp_setpoint)/sp_setpoint;
 }
 // Error is undefined at 0 setpoint
 if(sp_setpoint == 0)
 {
 // Pressure is Increasing

141

 if(Latest_Pressure > Last_Pressure)
 {
 Upwards_Press_Error = Latest_Pressure - sp_setpoint; // Not a percent
 }
 // Pressure is Decreasing
 if(Latest_Pressure < Last_Pressure)
 {
 Downwards_Press_Error = Latest_Pressure - sp_setpoint; // Not a percent
 }
 // Defined as close enough to "zero"
 if(Upwards_Press_Error < 0.1 && Downwards_Press_Error > -0.1)
 {
 Upwards_Press_Error = 0;
 Downwards_Press_Error = 0;
 }
 }

 Last_Pressure = Latest_Pressure;
 ProcessSystemEvents();
 }

 // Turn on Logging Trigger
 Logging_Trigger = 1;
 SetCtrlVal(panelHandle, PANEL_LOGGING_TRIGGER_LED,1);

 // Delay for a time at Setpoint
 for(delay=1 ; delay <= 600 ; delay++)
 {
 Delay(1);
 ProcessSystemEvents ();
 }

 // Turn off the Logging Trigger
 Logging_Trigger = 0;
 SetCtrlVal(panelHandle, PANEL_LOGGING_TRIGGER_LED,0);
 }
 }

 // Vent the System Pressure
 if(Is_COM3)
 {
 DSN_Vent_Pressure();
 }

 //---------------------------------------
 // Step 4 - Update Progress Bar
 //---------------------------------------
 //Percent_Complete = 100*(Current_Step+1)/Experiment_Steps;
 //SetCtrlVal(panelHandle, PANEL_EXP_PROGRESS, Percent_Complete);
 }
 }

 wb_setpoint = 20; // Setpoint to 20 once experiment is completed (in case it doesn't shut down)

 printf("Successfully Exited the Loop");

 DSN_Set_Bath_Setpoint();
 DAQquitflag = 0; // Shut down experiment
 DSN_Bath_Power_Off();
 }

 // ********************************** //

 else // Dynamic Experiment
 {
 // Read in Test Parameters
 GetCtrlVal(panelHandle, PANEL_P_MAX_T, &P_Max_T);
 GetCtrlVal(panelHandle, PANEL_P_MIN_T, &P_Min_T);
 GetCtrlVal(panelHandle, PANEL_P_T_INCREMENTS, &P_T_Increments);
 GetCtrlVal(panelHandle, PANEL_DP_STIM_DURATION, &DP_Stim_Duration);
 GetCtrlVal(panelHandle, PANEL_MTS_SPAN, &MTS_Span);
 GetCtrlVal(panelHandle, PANEL_P_MAX_F, &P_Max_F);
 GetCtrlVal(panelHandle, PANEL_P_MIN_F, &P_Min_F);
 GetCtrlVal(panelHandle, PANEL_P_F_INCREMENTS, &P_F_Increments);

 GetCtrlVal(panelHandle, PANEL_DWELL_TIME, &StimDwellTime);
 GetCtrlVal(panelHandle, PANEL_Waveform_1, &FuncGen_Waveform);

 Num_Amp_Cycles = 0; // Set default number of amplitude cycles to zero

 // Read in Dynamic Pressure Amplitude Parameters
 if (Amp_On_1)
 {
 GetCtrlVal(panelHandle, PANEL_P_DP_AMP_1, &DP_Amp_Array[Num_Amp_Cycles]);
 GetCtrlVal(panelHandle, PANEL_FUNC_GEN_VOLT_1, &FuncGenVolt_Array[Num_Amp_Cycles]);
 Num_Amp_Cycles++;
 }
 if (Amp_On_2)
 {
 GetCtrlVal(panelHandle, PANEL_P_DP_AMP_2, &DP_Amp_Array[Num_Amp_Cycles]);
 GetCtrlVal(panelHandle, PANEL_FUNC_GEN_VOLT_2, &FuncGenVolt_Array[Num_Amp_Cycles]);
 Num_Amp_Cycles++;
 }
 if (Amp_On_3)
 {
 GetCtrlVal(panelHandle, PANEL_P_DP_AMP_3, &DP_Amp_Array[Num_Amp_Cycles]);
 GetCtrlVal(panelHandle, PANEL_FUNC_GEN_VOLT_3, &FuncGenVolt_Array[Num_Amp_Cycles]);
 Num_Amp_Cycles++;
 }
 if (Amp_On_4)
 {
 GetCtrlVal(panelHandle, PANEL_P_DP_AMP_4, &DP_Amp_Array[Num_Amp_Cycles]);
 GetCtrlVal(panelHandle, PANEL_FUNC_GEN_VOLT_4, &FuncGenVolt_Array[Num_Amp_Cycles]);
 Num_Amp_Cycles++;
 }
 if (Amp_On_5)
 {
 GetCtrlVal(panelHandle, PANEL_P_DP_AMP_5, &DP_Amp_Array[Num_Amp_Cycles]);
 GetCtrlVal(panelHandle, PANEL_FUNC_GEN_VOLT_5, &FuncGenVolt_Array[Num_Amp_Cycles]);
 Num_Amp_Cycles++;
 }

 // Experiment Loop:
 // Notes: For safety, loop only works for a single temperature setpoint

142

 // Reconfigure MTS Machine before changing temperature setpoints

 // 1. Set the Amplitude Setpoint
 // 2. Set the Temperature Setpoint
 // 3. Wait till setpoint is reached
 // 4. Run the stimulation cycle at one frequency setpoint
 // 5. Update Progress Bar
 // 6. Dwell Period
 // 7. Update Progress Bar
 // 8. Repeat for all frequencies
 // 9. Repeat for all amplitudes with a dwell between amplitudes

 //---------------------------------------
 // Dynamic Experiment Loop:
 //---------------------------------------
 for(Amplitude_Cycle = 0 ; Amplitude_Cycle <= Num_Amp_Cycles - 1 ; Amplitude_Cycle++) // Amplitude Loop
 {
 // Set Percentage Complete to Zero on First Run
 if (Amplitude_Cycle == 0)
 {
 Percent_Complete = 0;
 SetCtrlVal(panelHandle, PANEL_EXP_PROGRESS, Percent_Complete);
 }
 else // Changing to next amplitude -> Dwell for 30 minutes to recover viscosity
 {
 Logging_Trigger=3;
 for(Current_Step=0 ; Current_Step<=1800 ; Current_Step++)
 {
 Delay(1);
 }
 }

 Total_Exp_Time = Num_Amp_Cycles * (P_F_Increments+1) * (DP_Stim_Duration + StimDwellTime);

 for(Current_Step=0 ; Current_Step <= P_F_Increments ; Current_Step++) // Frequency Loop
 {

 ProcessSystemEvents();

 // Switch the Logging Trigger
 Logging_Trigger = 0;

 //---------------------------------------
 // Step 1 - Set Temperature Setpoint
 //---------------------------------------
 if(Is_COM1)
 {
 wb_setpoint = P_Min_T;
 DSN_Set_Bath_Setpoint();
 }
 //---------------------------------------
 // Step 2 - Let Temperature Stabilize
 //---------------------------------------
 if(Is_COM1)
 {
 // Indicate setpoint not reached
 SetCtrlVal(panelHandle, PANEL_WAITING_TEMP_LED, 1);

 while(Temperature_Error > 0.1 || Temperature_Error < -0.1)
 {
 ProcessSystemEvents();

 if(wb_setpoint == 0) // Error is undefined at 0
 { // Defined as close enough to "zero"
 if(Probe_Temp_Trigger < 1 && Probe_Temp_Trigger > 1)
 {
 Temperature_Error = 0;
 }
 }
 }
 // Indicate setpoint reached
 SetCtrlVal(panelHandle, PANEL_WAITING_TEMP_LED, 0);
 }

 //--
 // Step 3 - Run Stimulation Cycle at One Frequency Setpoint
 //--

 // Determine Amplitude Setpoint and Voltage
 DP_Amplitude = DP_Amp_Array[Amplitude_Cycle];
 FuncGenVoltage = FuncGenVolt_Array[Amplitude_Cycle];
 SetCtrlVal(panelHandle, PANEL_CURR_AMP_STEP, DP_Amplitude);

 // Determine Frequency Setpoint
 freq_setpoint = P_Min_F + Current_Step*((P_Max_F - P_Min_F)/P_F_Increments);
 SetCtrlVal(panelHandle, PANEL_CURR_FREQ_STEP, freq_setpoint);

 // Decide Whether to Run the Function Generator Output
 if (freq_setpoint == 0 || DP_Amplitude == 0)
 {
 FuncGenVoltage = 0;
 No_FuncOutput = 1;
 }
 else
 {
 No_FuncOutput = 0;
 }

 // Update GUI with Function Generator Outputs
 SetCtrlVal (panelHandle, PANEL_VOLTAGE, FuncGenVoltage);
 SetCtrlVal (panelHandle, PANEL_FREQUENCY,freq_setpoint);

 // Switch the Logging Trigger
 Logging_Trigger = 1;
 SetCtrlVal(panelHandle, PANEL_LOGGING_TRIGGER_LED,1);

 if (No_FuncOutput == 1)
 {
 // Do not run function generator output
 }
 else
 {
 // Configure and Turn On Function Generator Channel 1
 DSN_Toggle_FuncGen_On();
 }

143

 // Run Frequency Stimulation for Specified Duration
 for(delay=1 ; delay <= DP_Stim_Duration ; delay++)
 {
 Delay(1);
 ProcessSystemEvents ();
 }

 // Turn Off the Function Generator Output
 DSN_Toggle_FuncGen_Off();

 //---------------------------------------
 // Step 4 - Update Progress Bar
 //---------------------------------------
 Percent_Complete = 100*(DP_Stim_Duration + (Current_Step)*(DP_Stim_Duration + StimDwellTime)
 + Amplitude_Cycle*(P_F_Increments+1)*(DP_Stim_Duration + StimDwellTime))/Total_Exp_Time;
 SetCtrlVal(panelHandle, PANEL_EXP_PROGRESS, Percent_Complete);

 //------------------------
 // Step 5 - Dwell Period
 //------------------------

 // Switch the Logging Trigger
 Logging_Trigger = 2;
 SetCtrlVal(panelHandle, PANEL_LOGGING_TRIGGER_LED,0);
 SetCtrlVal(panelHandle, PANEL_THIXOTROPY_LED, 1);

 FuncGenVoltage = 0;
 freq_setpoint = 0;
 SetCtrlVal (panelHandle, PANEL_VOLTAGE, FuncGenVoltage);
 SetCtrlVal (panelHandle, PANEL_FREQUENCY,freq_setpoint);

 // Delay for Dwell Period
 for(delay=1 ; delay <= StimDwellTime ; delay++)
 {
 Delay(1);
 ProcessSystemEvents ();
 }

 SetCtrlVal(panelHandle, PANEL_THIXOTROPY_LED, 0);

 //---------------------------------------
 // Step 6 - Update Progress Bar
 //---------------------------------------
 Percent_Complete = 100*(((Current_Step+1)*(DP_Stim_Duration + StimDwellTime)
 + Amplitude_Cycle*(P_F_Increments+1)*(DP_Stim_Duration + StimDwellTime))/Total_Exp_Time);
 SetCtrlVal(panelHandle, PANEL_EXP_PROGRESS, Percent_Complete);

 }
 }

 DAQquitflag = 0; // Shut down experiment
 DSN_Bath_Power_Off();
 SetCtrlVal(panelHandle, PANEL_START_STOP, 0);
 DSN_Update_Graphics();
 //--------------------------------------
 // Update On-screen Graphics
 //--------------------------------------
 DSN_Update_Graphics();
 MessagePopup ("Monitoring and Control Program", "The experiment was completed successfully.");

 }
 }

 case EVENT_RIGHT_CLICK:

 break;
 }
 }
 return 0;
 }

 /***/
 // 8888888 888b 888 .d8888b. 88888888888 8888888b. 888 888 888b d888 8888888888 888b 888 88888888888
 // 888 8888b 888 d88P Y88b 888 888 Y88b 888 888 8888b d8888 888 8888b 888 888
 // 888 88888b 888 Y88b. 888 888 888 888 888 88888b.d88888 888 88888b 888 888
 // 888 888Y88b 888 "Y888b. 888 888 d88P 888 888 888Y88888P888 8888888 888Y88b 888 888
 // 888 888 Y88b888 "Y88b. 888 8888888P" 888 888 888 Y888P 888 888 888 Y88b888 888
 // 888 888 Y88888 "888 888 888 T88b 888 888 888 Y8P 888 888 888 Y88888 888
 // 888 888 Y8888 Y88b d88P 888 888 T88b Y88b. .d88P 888 " 888 888 888 Y8888 888
 // 8888888 888 Y888 "Y8888P" 888 888 T88b "Y88888P" 888 888 8888888888 888 Y888 888
 //
 //
 //
 // 8888888888 888 888 888b 888 .d8888b. 88888888888 8888888 .d88888b. 888b 888 .d8888b.
 // 888 888 888 8888b 888 d88P Y88b 888 888 d88P" "Y88b 8888b 888 d88P Y88b
 // 888 888 888 88888b 888 888 888 888 888 888 888 88888b 888 Y88b.
 // 8888888 888 888 888Y88b 888 888 888 888 888 888 888Y88b 888 "Y888b.
 // 888 888 888 888 Y88b888 888 888 888 888 888 888 Y88b888 "Y88b.
 // 888 888 888 888 Y88888 888 888 888 888 888 888 888 Y88888 "888
 // 888 Y88b. .d88P 888 Y8888 Y88b d88P 888 888 Y88b. .d88P 888 Y8888 Y88b d88P
 // 888 "Y88888P" 888 Y888 "Y8888P" 888 8888888 "Y88888P" 888 Y888 "Y8888P"
 /***/

 //***************************************/
 // National Instruments Compact DAQ /
 //***************************************/

 //--
 // DSN_Setup_DAQ : Sets up the DAQ Task and RTD Channels
 //--

 void DSN_Setup_DAQ(void)
 {

 int i,count=0;

 // Retrieve Averaging Number and Sampling Rate from Panel

 GetCtrlVal(panelHandle,PANEL_DAQ_AVERAGING_NUMBER,&DAQsampsPerChan);
 GetCtrlVal(panelHandle,PANEL_DAQ_RATE,&DAQrate);

 //***/

144

 // Create the DAQ task /
 //***/

 DAQmxErrChk (DAQmxCreateTask("",&taskHandle));

 //***/
 // Create all the Necessary Channels /
 //***/

 //---
 if(Is_S1A)
 {
 // Sensor is a Pressure Transducer
 DAQmxErrChk(DAQmxCreateAIVoltageChan(taskHandle, "cDAQ1Mod6/ai0",
 "Voltage_1A", DAQmx_Val_RSE, 0, 10, DAQmx_Val_Volts, ""));
 }
 else
 {
 // Sensor is an RTD
 DAQmxErrChk(DAQmxCreateAIRTDChan (taskHandle, "cDAQ1Mod1/ai0",
 "Temperature_1A", 0, 150, DAQmx_Val_DegC, DAQmx_Val_Pt3851,
 DAQmx_Val_3Wire, DAQmx_Val_Internal, 0.001, 100));
 }
 //--
 if(Is_S1B)
 {
 // Sensor is a Pressure Transducer
 DAQmxErrChk(DAQmxCreateAIVoltageChan(taskHandle, "cDAQ1Mod6/ai1",
 "Voltage_1B", DAQmx_Val_RSE, 0, 10, DAQmx_Val_Volts, ""));
 }
 else
 {
 // Sensor is an RTD
 DAQmxErrChk(DAQmxCreateAIRTDChan (taskHandle, "cDAQ1Mod1/ai1",
 "Temperature_1B", 0, 150, DAQmx_Val_DegC, DAQmx_Val_Pt3851,
 DAQmx_Val_3Wire, DAQmx_Val_Internal, 0.001, 100));
 }
 //--
 if(Is_S2A)
 {
 // Sensor is a Pressure Transducer
 DAQmxErrChk(DAQmxCreateAIVoltageChan(taskHandle, "cDAQ1Mod6/ai2",
 "Voltage_2A", DAQmx_Val_RSE, 0, 10, DAQmx_Val_Volts, ""));
 }
 else
 {
 // Sensor is an RTD
 DAQmxErrChk(DAQmxCreateAIRTDChan (taskHandle, "cDAQ1Mod1/ai2",
 "Temperature_2A", 0, 150, DAQmx_Val_DegC, DAQmx_Val_Pt3851,
 DAQmx_Val_3Wire, DAQmx_Val_Internal, 0.001, 100));
 }
 //--
 if(Is_S2B)
 {
 // Sensor is a Pressure Transducer
 DAQmxErrChk(DAQmxCreateAIVoltageChan(taskHandle, "cDAQ1Mod6/ai3",
 "Voltage_2B", DAQmx_Val_RSE, 0, 10, DAQmx_Val_Volts, ""));
 }
 else
 {
 // Sensor is an RTD
 DAQmxErrChk(DAQmxCreateAIRTDChan (taskHandle, "cDAQ1Mod1/ai3",
 "Temperature_2B", 0, 150, DAQmx_Val_DegC, DAQmx_Val_Pt3851,
 DAQmx_Val_3Wire, DAQmx_Val_Internal, 0.001, 100));
 }
 //--
 if(Is_S3A)
 {
 // Sensor is a Pressure Transducer
 DAQmxErrChk(DAQmxCreateAIVoltageChan(taskHandle, "cDAQ1Mod6/ai4",
 "Voltage_3A", DAQmx_Val_RSE, 0, 10, DAQmx_Val_Volts, ""));
 }
 else
 {
 // Sensor is an RTD
 DAQmxErrChk(DAQmxCreateAIRTDChan (taskHandle, "cDAQ1Mod2/ai0",
 "Temperature_3A", 0, 150, DAQmx_Val_DegC, DAQmx_Val_Pt3851,
 DAQmx_Val_3Wire, DAQmx_Val_Internal, 0.001, 100));
 }
 //--
 if(Is_S3B)
 {
 // Sensor is a Pressure Transducer
 DAQmxErrChk(DAQmxCreateAIVoltageChan(taskHandle, "cDAQ1Mod6/ai5",
 "Voltage_3B", DAQmx_Val_RSE, 0, 10, DAQmx_Val_Volts, ""));
 }
 else
 {
 // Sensor is an RTD
 DAQmxErrChk(DAQmxCreateAIRTDChan (taskHandle, "cDAQ1Mod2/ai1",
 "Temperature_3B", 0, 150, DAQmx_Val_DegC, DAQmx_Val_Pt3851,
 DAQmx_Val_3Wire, DAQmx_Val_Internal, 0.001, 100));
 }
 //--
 if(Is_S4A)
 {
 // Sensor is a Pressure Transducer
 DAQmxErrChk(DAQmxCreateAIVoltageChan(taskHandle, "cDAQ1Mod6/ai6",
 "Voltage_4A", DAQmx_Val_RSE, 0, 10, DAQmx_Val_Volts, ""));
 }
 else
 {
 // Sensor is an RTD
 DAQmxErrChk(DAQmxCreateAIRTDChan (taskHandle, "cDAQ1Mod2/ai2",
 "Temperature_4A", 0, 150, DAQmx_Val_DegC, DAQmx_Val_Pt3851,
 DAQmx_Val_3Wire, DAQmx_Val_Internal, 0.001, 100));
 }
 //--
 if(Is_S4B)
 {
 // Sensor is a Pressure Transducer
 DAQmxErrChk(DAQmxCreateAIVoltageChan(taskHandle, "cDAQ1Mod6/ai7",
 "Voltage_4B", DAQmx_Val_RSE, 0, 10, DAQmx_Val_Volts, ""));
 }
 else

145

 {
 // Sensor is an RTD
 DAQmxErrChk(DAQmxCreateAIRTDChan (taskHandle, "cDAQ1Mod2/ai3",
 "Temperature_4B", 0, 150, DAQmx_Val_DegC, DAQmx_Val_Pt3851,
 DAQmx_Val_3Wire, DAQmx_Val_Internal, 0.001, 100));
 }
 //--
 if(Is_S5A)
 {
 // Sensor is a Pressure Transducer
 DAQmxErrChk(DAQmxCreateAIVoltageChan(taskHandle, "cDAQ1Mod6/ai8",
 "Voltage_5A", DAQmx_Val_RSE, 0, 10, DAQmx_Val_Volts, ""));
 }
 else
 {
 // Sensor is an RTD
 DAQmxErrChk(DAQmxCreateAIRTDChan (taskHandle, "cDAQ1Mod3/ai0",
 "Temperature_5A", 0, 150, DAQmx_Val_DegC, DAQmx_Val_Pt3851,
 DAQmx_Val_3Wire, DAQmx_Val_Internal, 0.001, 100));
 }
 //--
 if(Is_S5B)
 {
 // Sensor is a Pressure Transducer
 DAQmxErrChk(DAQmxCreateAIVoltageChan(taskHandle, "cDAQ1Mod6/ai9",
 "Voltage_5B", DAQmx_Val_RSE, 0, 10, DAQmx_Val_Volts, ""));
 }
 else
 {
 // Sensor is an RTD
 DAQmxErrChk(DAQmxCreateAIRTDChan (taskHandle, "cDAQ1Mod3/ai1",
 "Temperature_5B", 0, 150, DAQmx_Val_DegC, DAQmx_Val_Pt3851,
 DAQmx_Val_3Wire, DAQmx_Val_Internal, 0.001, 100));
 }
 //--
 if(Is_S6A)
 {
 // Sensor is a Pressure Transducer
 DAQmxErrChk(DAQmxCreateAIVoltageChan(taskHandle, "cDAQ1Mod6/ai10",
 "Voltage_6A", DAQmx_Val_RSE, 0, 10, DAQmx_Val_Volts, ""));
 }
 else
 {
 // Sensor is an RTD
 DAQmxErrChk(DAQmxCreateAIRTDChan (taskHandle, "cDAQ1Mod3/ai2",
 "Temperature_6A", 0, 150, DAQmx_Val_DegC, DAQmx_Val_Pt3851,
 DAQmx_Val_3Wire, DAQmx_Val_Internal, 0.001, 100));
 }
 //--
 if(Is_S6B)
 {
 // Sensor is a Pressure Transducer
 DAQmxErrChk(DAQmxCreateAIVoltageChan(taskHandle, "cDAQ1Mod6/ai11",
 "Voltage_6B", DAQmx_Val_RSE, 0, 10, DAQmx_Val_Volts, ""));
 }
 else
 {
 // Sensor is an RTD
 DAQmxErrChk(DAQmxCreateAIRTDChan (taskHandle, "cDAQ1Mod3/ai3",
 "Temperature_6B", 0, 150, DAQmx_Val_DegC, DAQmx_Val_Pt3851,
 DAQmx_Val_3Wire, DAQmx_Val_Internal, 0.001, 100));
 }
 //--
 if(Is_S7A) // Create channel but do not use its data while external probe is in position S7A!!
 {
 // Sensor is a Pressure Transducer
 DAQmxErrChk(DAQmxCreateAIVoltageChan(taskHandle, "cDAQ1Mod6/ai12",
 "Voltage_7A", DAQmx_Val_RSE, 0, 10, DAQmx_Val_Volts, ""));
 }
 else
 {
 // Sensor is an RTD
 DAQmxErrChk(DAQmxCreateAIRTDChan (taskHandle, "cDAQ1Mod4/ai0",
 "Temperature_7A", 0, 150, DAQmx_Val_DegC, DAQmx_Val_Pt3851,
 DAQmx_Val_3Wire, DAQmx_Val_Internal, 0.001, 100));
 }
 //--
 if(Is_S7B)
 {
 // Sensor is a Pressure Transducer
 DAQmxErrChk(DAQmxCreateAIVoltageChan(taskHandle, "cDAQ1Mod6/ai13",
 "Voltage_7B", DAQmx_Val_RSE, 0, 10, DAQmx_Val_Volts, ""));
 }
 else
 {
 // Sensor is an RTD
 DAQmxErrChk(DAQmxCreateAIRTDChan (taskHandle, "cDAQ1Mod4/ai1",
 "Temperature_7B", 0, 150, DAQmx_Val_DegC, DAQmx_Val_Pt3851,
 DAQmx_Val_3Wire, DAQmx_Val_Internal, 0.001, 100));
 }
 //--
 if(Is_S8A)
 {
 // Sensor is a Pressure Transducer
 DAQmxErrChk(DAQmxCreateAIVoltageChan(taskHandle, "cDAQ1Mod6/ai14",
 "Voltage_8A", DAQmx_Val_RSE, 0, 10, DAQmx_Val_Volts, ""));
 }
 else
 {
 // Sensor is an RTD
 DAQmxErrChk(DAQmxCreateAIRTDChan (taskHandle, "cDAQ1Mod4/ai2",
 "Temperature_8A", 0, 150, DAQmx_Val_DegC, DAQmx_Val_Pt3851,
 DAQmx_Val_3Wire, DAQmx_Val_Internal, 0.001, 100));
 }
 //--
 if(Is_S8B)
 {
 // Sensor is a Pressure Transducer
 DAQmxErrChk(DAQmxCreateAIVoltageChan(taskHandle, "cDAQ1Mod6/ai15",
 "Voltage_8B", DAQmx_Val_RSE, 0, 10, DAQmx_Val_Volts, ""));
 }
 else
 {
 // Sensor is an RTD
 DAQmxErrChk(DAQmxCreateAIRTDChan (taskHandle, "cDAQ1Mod4/ai3",

146

 "Temperature_8B", 0, 150, DAQmx_Val_DegC, DAQmx_Val_Pt3851,
 DAQmx_Val_3Wire, DAQmx_Val_Internal, 0.001, 100));
 }
 //--
 if(Is_S9A)
 {
 // Sensor is a Pressure Transducer
 DAQmxErrChk(DAQmxCreateAIVoltageChan(taskHandle, "cDAQ1Mod6/ai16",
 "Voltage_9A", DAQmx_Val_RSE, 0, 10, DAQmx_Val_Volts, ""));
 }
 else
 {
 // Sensor is an RTD
 DAQmxErrChk(DAQmxCreateAIRTDChan (taskHandle, "cDAQ1Mod5/ai0",
 "Temperature_9A", 0, 150, DAQmx_Val_DegC, DAQmx_Val_Pt3851,
 DAQmx_Val_3Wire, DAQmx_Val_Internal, 0.001, 100));
 }
 //--
 if(Is_S9B)
 {
 // Sensor is a Pressure Transducer
 DAQmxErrChk(DAQmxCreateAIVoltageChan(taskHandle, "cDAQ1Mod6/ai17",
 "Voltage_9B", DAQmx_Val_RSE, 0, 10, DAQmx_Val_Volts, ""));
 }
 else
 {
 // Sensor is an RTD
 DAQmxErrChk(DAQmxCreateAIRTDChan (taskHandle, "cDAQ1Mod5/ai1",
 "Temperature_9B", 0, 150, DAQmx_Val_DegC, DAQmx_Val_Pt3851,
 DAQmx_Val_3Wire, DAQmx_Val_Internal, 0.001, 100));
 }
 //--
 if(Exp_Type)
 {
 // Static Experiment
 }
 else
 {
 // Dynamic Experiment - Create Piezo RTD Channel
 DAQmxErrChk(DAQmxCreateAIRTDChan (taskHandle, "cDAQ1Mod5/ai3",
 "Piezo_Temp", 0, 150, DAQmx_Val_DegC, DAQmx_Val_Pt3851,
 DAQmx_Val_3Wire, DAQmx_Val_Internal, 0.001, 100));
 }

 //**/
 // Setup the DAQ Timing and Number of Channels /
 //**/

 // Set the clock timing
 DAQmxErrChk (DAQmxCfgSampClkTiming (taskHandle,"", DAQrate,
 DAQmx_Val_Rising, DAQmx_Val_ContSamps, DAQsampsPerChan));

 // Set the number of channels to scan
 DAQmxErrChk (DAQmxGetTaskAttribute(taskHandle,DAQmx_Task_NumChans,&DAQnumChannels));

 // Make space for the data
 if((DAQdata=malloc(DAQsampsPerChan*DAQnumChannels*sizeof(float64)))==NULL) {
 MessagePopup("Error","Not enough memory");
 goto Error;
 }
 // Make space for the averaging aray
 if((DAQArray_Out=malloc(DAQsampsPerChan*sizeof(float64)))==NULL) {
 MessagePopup("Error","Not enough memory");
 goto Error;
 }

 //Exit
 Error:
 if(DAQmxFailed(DAQerror))
 {
 DAQmxGetExtendedErrorInfo(DAQerrBuff,2048);
 DAQquitflag =0;
 }

 if(DAQmxFailed(DAQerror))
 MessagePopup("DAQmx Error",DAQerrBuff);
 }

 //--
 // DSN_Run_DAQ : Run the DAQ Task and RTD Channels
 //--

 void DSN_Run_DAQ(void)
 {
 int i;
 double pressure_scaling_factor = 200; // psi per Volt

 /***/
 // DAQmx Start DAQ Task /
 /***/

 if(DAQ_Task_Started)
 {
 // Do not attempt to start task
 }
 else
 {
 DAQmxErrChk (DAQmxStartTask(taskHandle));
 }

 DAQ_Task_Started = 1;
 ProcessDrawEvents();

 /***/
 // DAQmx Read Code /
 /***/

 Clear1D (DAQdata, DAQsampsPerChan*DAQnumChannels);
 DAQmxReadAnalogF64(taskHandle,DAQsampsPerChan,10.0,DAQmx_Val_GroupByChannel,
 DAQdata,DAQsampsPerChan*DAQnumChannels,&DAQnumRead,NULL);

 if(DAQnumRead>0)
 for(i=0;i<DAQnumChannels;i++)
 {
 // Extract Data for one Channel

147

 Subset1D (DAQdata, DAQnumChannels*DAQnumRead, i*DAQnumRead, DAQnumRead, DAQArray_Out);

 // Average the Data Points
 Mean (DAQArray_Out,DAQnumRead, &DAQoutMean);

 switch(i)
 {
 case 0:
 if(Is_S1A) // Pressure
 {
 DAQoutMean = DAQoutMean * pressure_scaling_factor;
 }
 SetCtrlVal(panelHandle,PANEL_S1A,DAQoutMean);
 S1A[0] = DAQoutMean;
 break;
 case 1:
 if(Is_S1B) // Pressure
 {
 DAQoutMean = DAQoutMean * pressure_scaling_factor;
 }
 SetCtrlVal(panelHandle,PANEL_S1B,DAQoutMean);
 S1B[0] = DAQoutMean;
 break;
 case 2:
 if(Is_S2A) // Pressure
 {
 DAQoutMean = DAQoutMean * pressure_scaling_factor;
 }
 SetCtrlVal(panelHandle,PANEL_S2A,DAQoutMean);
 S2A[0] = DAQoutMean;
 break;
 case 3:
 if(Is_S2B) // Pressure
 {
 DAQoutMean = DAQoutMean * pressure_scaling_factor;
 }
 SetCtrlVal(panelHandle,PANEL_S2B,DAQoutMean);
 S2B[0] = DAQoutMean;
 break;
 case 4:
 if(Is_S3A) // Pressure
 {
 DAQoutMean = DAQoutMean * pressure_scaling_factor;
 }
 SetCtrlVal(panelHandle,PANEL_S3A,DAQoutMean);
 S3A[0] = DAQoutMean;
 break;
 case 5:
 if(Is_S3B) // Pressure
 {
 DAQoutMean = DAQoutMean * pressure_scaling_factor;
 }
 SetCtrlVal(panelHandle,PANEL_S3B,DAQoutMean);
 S3B[0] = DAQoutMean;
 break;
 case 6:
 if(Is_S4A) // Pressure
 {
 DAQoutMean = DAQoutMean * pressure_scaling_factor;
 }
 SetCtrlVal(panelHandle,PANEL_S4A,DAQoutMean);
 S4A[0] = DAQoutMean;
 break;
 case 7:
 if(Is_S4B) // Pressure
 {
 DAQoutMean = DAQoutMean * pressure_scaling_factor;
 }
 SetCtrlVal(panelHandle,PANEL_S4B,DAQoutMean);
 S4B[0] = DAQoutMean;
 break;
 case 8:
 if(Is_S5A) // Pressure
 {
 DAQoutMean = DAQoutMean * pressure_scaling_factor;
 }
 SetCtrlVal(panelHandle,PANEL_S5A,DAQoutMean);
 S5A[0] = DAQoutMean;
 break;
 case 9:
 if(Is_S5B) // Pressure
 {
 DAQoutMean = DAQoutMean * pressure_scaling_factor;
 }
 SetCtrlVal(panelHandle,PANEL_S5B,DAQoutMean);
 S5B[0] = DAQoutMean;
 break;
 case 10:
 if(Is_S6A) // Pressure
 {
 DAQoutMean = DAQoutMean * pressure_scaling_factor;
 }
 SetCtrlVal(panelHandle,PANEL_S6A,DAQoutMean);
 S6A[0] = DAQoutMean;
 break;
 case 11:
 if(Is_S6B) // Pressure
 {
 DAQoutMean = DAQoutMean * pressure_scaling_factor;
 }
 SetCtrlVal(panelHandle,PANEL_S6B,DAQoutMean);
 S6B[0] = DAQoutMean;
 break;
 case 12:
 /* Since external bath probe is in position S7A, we do not use
 the data from this channel. The channel was created to make sure
 all other channels still fit this "switch" statement. Temperature
 for S7A is obtained using the DSN_Poll_Bath_Probe function in the
 slow equipment loop. Uncomment this section if the probe is moved
 to another position. */

 // if(Is_S7A) // Pressure
 // {
 // DAQoutMean = DAQoutMean * pressure_scaling_factor;
 // }

148

 // SetCtrlVal(panelHandle,PANEL_S7A,DAQoutMean);
 // S7A[0] = DAQoutMean;
 break;
 case 13:
 if(Is_S7B) // Pressure
 {
 DAQoutMean = DAQoutMean * pressure_scaling_factor;
 }
 SetCtrlVal(panelHandle,PANEL_S7B,DAQoutMean);
 S7B[0] = DAQoutMean;
 break;
 case 14:
 if(Is_S8A) // Pressure
 {
 DAQoutMean = DAQoutMean * pressure_scaling_factor;
 }
 SetCtrlVal(panelHandle,PANEL_S8A,DAQoutMean);
 S8A[0] = DAQoutMean;
 break;
 case 15:
 if(Is_S8B) // Pressure
 {
 DAQoutMean = DAQoutMean * pressure_scaling_factor;
 }
 SetCtrlVal(panelHandle,PANEL_S8B,DAQoutMean);
 S8B[0] = DAQoutMean;
 break;
 case 16:
 if(Is_S9A) // Pressure
 {
 DAQoutMean = DAQoutMean * pressure_scaling_factor;
 }
 SetCtrlVal(panelHandle,PANEL_S9A,DAQoutMean);
 S9A[0] = DAQoutMean;
 break;
 case 17:
 if(Is_S9B) // Pressure
 {
 DAQoutMean = DAQoutMean * pressure_scaling_factor;
 }
 SetCtrlVal(panelHandle,PANEL_S9B,DAQoutMean);
 S9B[0] = DAQoutMean;
 break;
 case 18:
 SetCtrlVal(panelHandle,PANEL_PIEZO_TEMP,DAQoutMean);
 Piezo_Temp[0] = DAQoutMean;
 break;
 }
 }
 //Exit
 Error:
 if(DAQmxFailed(DAQerror))
 {
 DAQmxGetExtendedErrorInfo(DAQerrBuff,2048);
 DAQquitflag =0;
 }
 }

 //***********************************
 // Cole Parmer Fluid Bath
 //***********************************

 //--
 // DSN_Bath_Power_On : Powers ON the fluid bath
 //--

 void DSN_Bath_Power_On(void)
 {
 char* power_on = "SO1\r"; // Define Command to Power On

 FlushInQ(SP_comport); // Flush the Input and Output Queue
 FlushOutQ(SP_comport);

 stringsize = StringLength (power_on);
 ComWrt (SP_comport, power_on, stringsize); // Powers On

 Is_Bath = 1; // Define Bath Power Global as "On"
 }

 //--
 // DSN_Bath_Power_Off : Powers OFF the fluid bath
 //--

 void DSN_Bath_Power_Off(void)
 {
 char* power_off = "SO0\r"; // Define Command to Power On

 FlushInQ(SP_comport); // Flush the Input and Output Queue
 FlushOutQ(SP_comport);

 stringsize = StringLength (power_off);
 ComWrt (SP_comport, power_off, stringsize); // Powers Off

 Is_Bath = 0; // Define Bath Power Global as "Off"
 }

 //--
 // DSN_Poll_Bath_Temp : Polls Internal Bath Temperature
 //--

 void DSN_Poll_Bath_Temp(void)
 {
 char* ask_temp = "RT\r", // Command to Request Internal Temperature
 ascii_temp[20]; // ASCII response to the temperature query

 double bath_temp; // Decimal Value

 FlushInQ(SP_comport); // Flush the Input and Output Queue
 FlushOutQ(SP_comport);

 stringsize = StringLength (ask_temp);
 ComWrt (SP_comport, ask_temp, stringsize); // Send temperature request to COM Port

 ascii_temp[0] = '\0';
 bytes_read = ComRdTerm (SP_comport, ascii_temp, 9, 13); // Read incoming temperature from COM Port

149

 bath_temp = atof(ascii_temp); // Convert ASCII to Double Format

 SetCtrlVal(panelHandle, PANEL_WB_TEMP, bath_temp); // Updates bath temperature on screen

 CmtGetLock (Slow_lockHandle);
 DSN_SHIFT_Slow(0);
 Bath_Temp[0] = bath_temp; // Log value in Bath Temperature Array
 CmtReleaseLock (Slow_lockHandle);
 }

 //--
 // DSN_Poll_Bath_Setpoint : Polls Fluid Bath Setpoint
 //--

 void DSN_Poll_Bath_Setpoint(void)
 {
 char* ask_setpoint = "RS\r", // Command to Request Setpoint Temperature
 ascii_setpoint[20]; // ASCII response to the setpoint query

 FlushInQ(SP_comport); // Flush the Input and Output Queue
 FlushOutQ(SP_comport);

 stringsize = StringLength (ask_setpoint);
 ComWrt (SP_comport, ask_setpoint, stringsize); // Send setpoint request to COM Port

 ascii_setpoint[0] = '\0';
 bytes_read = ComRdTerm (SP_comport, ascii_setpoint, 9, 13); // Read incoming setpoint from COM Port

 wb_setpoint = atof(ascii_setpoint); // Convert ASCII to Double Format

 SetCtrlVal(panelHandle, PANEL_WB_SETPOINT, wb_setpoint); // Updates bath setpoint on screen

 CmtGetLock (Slow_lockHandle);
 DSN_SHIFT_Slow(1);
 Bath_Setpoint[0] = wb_setpoint; // Log value in Setpoint Array
 CmtReleaseLock (Slow_lockHandle);
 }

 //---
 // (Callback) Get_New_Setpoint : Gets Fluid Bath Setpoint from Screen
 //---

 int CVICALLBACK Get_New_Setpoint (int panel, int control, int event,
 void *callbackData, int eventData1, int eventData2)
 {
 switch (event)
 {
 case EVENT_COMMIT:

 GetCtrlVal(panelHandle, PANEL_WB_SETPOINT, &wb_setpoint);
 DSN_Set_Bath_Setpoint();

 break;
 case EVENT_RIGHT_CLICK:

 break;
 }
 return 0;
 }

 //--
 // DSN_Set_Bath_Setpoint : Sets Fluid Bath Setpoint
 //--

 void DSN_Set_Bath_Setpoint(void)
 {
 char ascii_setpoint[15],
 wholeNum_string[4],
 decNum_string[4];

 char* setpointcode = "SS";
 char* decPoint_string = ".";

 int wholeNum,
 decNum;

 wholeNum = wb_setpoint; // Captures the whole number portion of the setpoint
 decNum = (wb_setpoint-wholeNum)*100; // Captures the 2 decimal places of the setpoint

 sprintf(wholeNum_string, "%i", wholeNum);
 sprintf(decNum_string, "%i", decNum);
 // Assembles the command as shown below
 strcpy(ascii_setpoint, setpointcode); // SS
 strcat(ascii_setpoint, wholeNum_string); // SSXXX
 strcat(ascii_setpoint, decPoint_string); // SSXXX.
 strcat(ascii_setpoint, decNum_string); // SSXXX.XX
 strcat(ascii_setpoint, "\r"); // SSXXX.XX\r

 FlushInQ(SP_comport); // Flush the Input and Output Queue
 FlushOutQ(SP_comport);

 stringsize = StringLength (ascii_setpoint);
 ComWrt (SP_comport, ascii_setpoint, stringsize); // Sends new setpoint to COM Port
 }

 //---
 // (Callback) Select_Bath_Fluid : Sets Fluid Bath Temperature Alarms
 //---

 int CVICALLBACK Select_Bath_Fluid (int panel, int control, int event,
 void *callbackData, int eventData1, int eventData2)
 {
 char ascii_highalarm[15],
 ascii_lowalarm[15],
 wholeNum_string[4],
 decNum_string[3];
 char* highalarmcode = "SH";
 char* lowalarmcode = "SL";
 char* decPoint_string = ".";

 double setpoint,
 highalarm_value,
 lowalarm_value,
 ethglyc_maxtemp = 105, // Max safe operating temperature for ethylene glycol°C

150

 ethglyc_mintemp = -30, // Min safe operating temperature for ethylene glycol°C
 distH2O_maxtemp = 100, // Max safe operating temperature for distilled water °C
 distH2O_mintemp = 0; // Min safe operating temperature for distilled water °C

 int selected_fluid,
 wholeNum;

 switch (event)
 {
 case EVENT_COMMIT:

 GetCtrlVal(panelHandle,PANEL_BATHFLUID, &selected_fluid); // Find which fluid is selected
 GetCtrlVal(panelHandle,PANEL_WB_SETPOINT, &setpoint); // Find current setpoint

 //---
 // 1st - Set the Setpoint Limits within the Program
 //---

 switch (selected_fluid)
 {
 case 0: // Ethylene Glycol

 // Change Valid Setpoint Range
 SetCtrlAttribute(panelHandle,PANEL_WB_SETPOINT,ATTR_MAX_VALUE,ethglyc_maxtemp);
 SetCtrlAttribute(panelHandle,PANEL_WB_SETPOINT,ATTR_MIN_VALUE,ethglyc_mintemp);

 highalarm_value = ethglyc_maxtemp;
 lowalarm_value = ethglyc_mintemp;

 break;

 case 1: // Distilled Water

 // Change Valid Setpoint Range
 SetCtrlAttribute(panelHandle,PANEL_WB_SETPOINT,ATTR_MAX_VALUE,distH2O_maxtemp);
 SetCtrlAttribute(panelHandle,PANEL_WB_SETPOINT,ATTR_MIN_VALUE,distH2O_mintemp);

 highalarm_value = distH2O_maxtemp;
 lowalarm_value = distH2O_mintemp;

 break;

 }

 //---
 // 2nd - Send the High and Low Alarm Values to the Bath
 //---

 // High Alarm //

 wholeNum = highalarm_value; // Captures the whole number portion of the high alarm
 sprintf(wholeNum_string, "%i", wholeNum);
 // Assembles the command as shown below
 strcpy(ascii_highalarm, highalarmcode); // SH
 strcat(ascii_highalarm, wholeNum_string); // SHXXX
 strcat(ascii_highalarm, "\r"); // SHXXX\r

 FlushInQ(SP_comport); // Flush the Input and Output Queue
 FlushOutQ(SP_comport);

 stringsize = StringLength (ascii_highalarm);
 ComWrt (SP_comport, ascii_highalarm, stringsize); // Sends new high alarm to COM Port

 // Low Alarm //

 wholeNum = lowalarm_value; // Captures the whole number portion of the low alarm
 sprintf(wholeNum_string, "%i", wholeNum);
 // Assembles the command as shown below
 strcpy(ascii_lowalarm, lowalarmcode); // SL
 strcat(ascii_lowalarm, wholeNum_string); // SLXXX
 strcat(ascii_lowalarm, "\r"); // SLXXX\r

 FlushInQ(SP_comport); // Flush the Input and Output Queue
 FlushOutQ(SP_comport);

 stringsize = StringLength (ascii_lowalarm);
 ComWrt (SP_comport, ascii_lowalarm, stringsize); // Sends new high alarm to COM Port

 break;

 case EVENT_RIGHT_CLICK:

 break;
 }
 return 0;
 }

 //--
 // DSN_Set_Bath_External : Sets Bath to use Remote Probe
 //--

 void DSN_Set_Bath_External(void)
 {
 char* power_on = "Sr1\r"; // Define Command to Power On

 FlushInQ(SP_comport); // Flush the Input and Output Queue
 FlushOutQ(SP_comport);

 stringsize = StringLength (power_on);
 ComWrt (SP_comport, power_on, stringsize); // Powers On
 }

 //--
 // DSN_Poll_Bath_Probe : Polls External Probe Temperature
 //--

 void DSN_Poll_Bath_Probe(void)
 {
 char* ask_temp = "RR\r", // Command to Request External Temperature
 ascii_temp[20]; // ASCII response to the temperature query

 double probe_temp; // Decimal Value

 FlushInQ(SP_comport); // Flush the Input and Output Queue

151

 FlushOutQ(SP_comport);

 stringsize = StringLength (ask_temp);

 // Send temperature request to COM Port
 ComWrt (SP_comport, ask_temp, stringsize);

 ascii_temp[0] = '\0';

 // Read incoming temperature from COM Port
 bytes_read = ComRdTerm (SP_comport, ascii_temp, 9, 13);

 // Convert ASCII to Double Format
 probe_temp = atof(ascii_temp);

 // Updates probe temperature on screen (S7A)
 SetCtrlVal(panelHandle, PANEL_S7A, probe_temp);

 CmtGetLock (Slow_lockHandle);
 DSN_SHIFT_Slow(6);
 S7A[0] = probe_temp; // Log value in S7A Array
 CmtReleaseLock (Slow_lockHandle);
 }

 //***********************************
 // Viscojet Viscometer
 //***********************************

 //--
 // DSN_Poll_Viscosity : Request Viscosity
 //--

 void DSN_Poll_Viscosity(void)
 {
 double viscosity_response;

 char response[200]="\0",
 hex_ave_live_visc[9]="\0",
 hex_ave_corr_visc[9]="\0",
 hex_live_visc[9]="\0";

 FlushInQ(SP2_comport); // Flush the Input and Output Queue
 FlushOutQ(SP2_comport);

 ComWrt (SP2_comport, ":010410000004E7\n", 17); // Poll Viscosities
 Delay (1.5); // Allow Time for Instrument to Respond
 inqlen = GetInQLen (SP2_comport); // Check Response Length

 bytes_read = ComRdTerm (SP2_comport, response, inqlen, 10); // Read Hex Response

 //printf ("bytes_read = %i\n", bytes_read);
 //printf ("The complete hex response is %s\n", response);

 CopyBytes (hex_ave_live_visc, 0, response, 7, 8); // Parse Response
 CopyBytes (hex_ave_corr_visc, 0, response, 15, 8);
 CopyBytes (hex_live_visc, 0, response, 23, 8);

 // Converts to Decimal and Updates Readouts
 viscosity_response = DSN_Hex_to_Float(hex_ave_live_visc, PANEL_AVE_LIVE_VISCOSITY);

 CmtGetLock (Slow_lockHandle);
 DSN_SHIFT_Slow(2);
 Ave_L_Visc[0] = viscosity_response; // Updates Array
 CmtReleaseLock (Slow_lockHandle);

 viscosity_response = DSN_Hex_to_Float(hex_ave_corr_visc, PANEL_AVE_CORR_VISC);

 CmtGetLock (Slow_lockHandle);
 DSN_SHIFT_Slow(3);
 Ave_TC_Visc[0] = viscosity_response;
 CmtReleaseLock (Slow_lockHandle);
 }

 //---
 // DSN_Poll_Bulb_Temperature : Requests viscometer bulb temperature
 //---

 void DSN_Poll_Bulb_Temperature(void)
 {
 double bulb_temp_response;

 char response[200]="\0",
 hex_visc_bulb_temp[9]="\0";

 FlushInQ(SP2_comport); // Flush the Input and Output Queue
 FlushOutQ(SP2_comport);

 ComWrt (SP2_comport, ":010410100003D8\n", 17); // Poll Bulb Temperature
 Delay (1.75); // Allow Time for Instrument to Respond
 inqlen = GetInQLen (SP2_comport); // Check Response Length

 ComRdTerm (SP2_comport, response, inqlen, 10); // Read Hex Response
 CopyBytes (hex_visc_bulb_temp, 0, response, 7, 8); // Parse Response

 // Converts to Decimal and Updates Readouts
 bulb_temp_response = DSN_Hex_to_Float(hex_visc_bulb_temp, PANEL_BULB_TEMPERATURE);

 CmtGetLock (Slow_lockHandle);
 DSN_SHIFT_Slow(4);
 Bulb_Temp[0] = bulb_temp_response; // Updates Array
 CmtReleaseLock (Slow_lockHandle);
 }

 //--
 // DSN_Hex_to_Float : Converts 8 bit ASCII Hex Float to Decimal Number
 //--

 double DSN_Hex_to_Float(char* ascii_hex_in, int output_indicator)
 {
 double float_out; // Float Output from Hex-to-Float Function

 int binary_out,
 i,
 integer_exponent,
 whole_num_array_size = 0,

152

 dec_num_array_size = 0;

 char //ascii_hex_in[9], // Step 1 Array
 binary_from_hex[36] = "\0", // Step 2 Arrays
 ascii_hex_chunk[5], //
 sign_array[2] = "\0", // Step 3 Arrays
 exponent_array[9] = "\0", //
 mantissa_array[25] = "1", // Leading 1 Normalizes Mantissa
 whole_num_array[200] = "\0", // Step 5 Arrays
 dec_num_array[200] = "\0", //
 complete_binary_num[200] = "\0"; // Step 6 Array

 char *end_pointer;
 char *decimal_point = ".";

 float float_whole,
 float_decimal = 0.0;

 // Define binary digit arrays
 char *zero = "0000";
 char *one = "0001";
 char *two = "0010";
 char *three = "0011";
 char *four = "0100";
 char *five = "0101";
 char *six = "0110";
 char *seven = "0111";
 char *eight = "1000";
 char *nine = "1001";
 char *ten = "1010";
 char *eleven = "1011";
 char *twelve = "1100";
 char *thirteen = "1101";
 char *fourteen = "1110";
 char *fifteen = "1111";

 /**/
 /* Step 1: Obtain Hex Input String */
 /**/

 //printf ("The hex number is %s\n", ascii_hex_in);

 /**/
 /* Step 2: Convert Hex String to Binary */
 /**/

 for(i=0;ascii_hex_in[i]!=NULL;i++)
 {
 switch(ascii_hex_in[i])
 {
 case '0':
 strcat (binary_from_hex, zero);
 break;
 case '1':
 strcat (binary_from_hex, one);
 break;
 case '2':
 strcat (binary_from_hex, two);
 break;
 case '3':
 strcat (binary_from_hex, three);
 break;
 case '4':
 strcat (binary_from_hex, four);
 break;
 case '5':
 strcat (binary_from_hex, five);
 break;
 case '6':
 strcat (binary_from_hex, six);
 break;
 case '7':
 strcat (binary_from_hex, seven);
 break;
 case '8':
 strcat (binary_from_hex, eight);
 break;
 case '9':
 strcat (binary_from_hex, nine);
 break;
 case 'a':
 case 'A':
 strcat (binary_from_hex, ten);
 break;
 case 'b':
 case 'B':
 strcat (binary_from_hex, eleven);
 break;
 case 'c':
 case 'C':
 strcat (binary_from_hex, twelve);
 break;
 case 'd':
 case 'D':
 strcat (binary_from_hex, thirteen);
 break;
 case 'e':
 case 'E':
 strcat (binary_from_hex, fourteen);
 break;
 case 'f':
 case 'F':
 strcat (binary_from_hex, fifteen);
 break;
 default:
 //printf("Entered number is not Hexadecimal. Printed value is not correct.");
 break;
 }
 }
 //printf ("The hex number in binary is %s\n", binary_from_hex);

 /**/
 /* Step 3: Break Binary String into Sign, Exponent, and Mantissa Arrays */

153

 /**/

 sign_array[0] = binary_from_hex[0]; // Copy Sign (Bit 31)

 for (i=0; i<8; i++) // Copy Exponent (Bits 30-23)
 {
 exponent_array[i] = binary_from_hex[i+1];
 }

 for (i=0; i<23; i++) // Copy Mantissa (Bits 22-0)
 {
 mantissa_array[i+1] = binary_from_hex[i+9];
 }

 //printf ("The binary sign bit is %s\n", sign_array);
 //printf ("The binary exponent is %s\n", exponent_array);
 //printf ("The binary mantissa is %s\n", mantissa_array);

 /**/
 /* Step 4: Compute Integer Value of Exponent */
 /**/

 // -127 is there because exponent is biased
 integer_exponent = strtol (exponent_array, &end_pointer, 2) - 127;

 //printf ("The integer exponent is %i\n", integer_exponent);

 /**/
 /* Step 5: Shift Decimal Position According to Exponent and Create New Binary */
 /* Number Arrays for the Whole and Decimal Portions of the Float */
 /**/

 if (integer_exponent > 0) // Whole and Decimal Portions Both Exist
 {
 for (i=0; i < (integer_exponent + 1); i++) // Fill Whole Number Binary Array
 {
 whole_num_array[i] = mantissa_array[i];
 //printf ("The binary whole number array is %s\n", whole_num_array);
 }

 for (i=0; i < (23 - integer_exponent); i++) // Fill Decimal Number Binary Array
 {
 dec_num_array[i] = mantissa_array[(integer_exponent + 1 + i)];
 }
 }

 else // Only Decimal Portion Exists
 {
 for (i=0; i < (-1 - integer_exponent); i++) // Add Leading Zeros
 {
 dec_num_array[i] = '0';
 }
 // Fill Decimal Number Binary Array (Shifted by Leading Zeros)
 strcat(dec_num_array, mantissa_array);
 }

 //printf ("The binary decimal number array is %s\n", dec_num_array);

 /**/
 /* Step 6: Compute Base 10 Values for Whole and Decimal Portions */
 /* and Assemble Complete Floating Point Number */
 /**/

 // Assemble the Complete Binary String as a Check
 strcat(complete_binary_num, whole_num_array);
 strcat(complete_binary_num, decimal_point);
 strcat(complete_binary_num, dec_num_array);

 //printf("The complete binary number is %s\n", complete_binary_num);

 // Compute Whole Number Portion of Float
 float_whole = strtol(whole_num_array, &end_pointer, 2);

 // Compute Decimal Number Portion of Float
 for(i=0;dec_num_array[i]!=NULL;i++)
 {
 switch(dec_num_array[i])
 {
 case '0':
 break;
 case '1':
 float_decimal = float_decimal + pow(2, -i-1);
 break;
 }
 }

 float_out = float_whole + float_decimal;

 switch(sign_array[0]) // Determine Sign of Floating Point Number
 {
 case '0':
 break;
 case '1':
 float_out = - float_out;
 break;
 }

 //printf("The floating point decimal is %f\n", float_decimal);
 //printf("The final floating point number is %f\n\n", float_out);

 // Sends Decimal Result out to the Panel
 SetCtrlVal(panelHandle, output_indicator, float_out);

 return float_out;
 }

 //***********************************
 // GE Pressure Controller
 //***********************************

 //--
 // DSN_Initialize_P_Controller : Sets to Remote Operation
 // : Sets Units to PSI
 // : Set to Overdamped Control
 // : Set Notation Code to N1

154

 // : Set Interrupt to End of Conversion
 // : Vents the System
 // : Zero's the Instrument
 //--

 void DSN_Initialize_P_Controller(void)
 {
 char* remote_mode = "R1\r"; /* Command to Set to Remote Mode */
 char* set_units = "S1\r"; /* Command to Set Units to psi */
 char* set_control_rate = "J1\r"; /* Command to Set Overdamped Control */
 /* Vents Instrument */
 char* zero = "O1\r"; /* Command to Zero Instrument */
 char* notation_code = "N1\r"; /* Command to Set Notation Code to N1 */
 char* interrupt_code = "I4\r"; /* Command to Set Interrupt on End of Conversion */

 FlushInQ(SP3_comport);
 FlushOutQ(SP3_comport);
 stringsize = StringLength (remote_mode);
 ComWrt (SP3_comport, remote_mode, stringsize); // Sets control mode at COM Port

 FlushInQ(SP3_comport);
 FlushOutQ(SP3_comport);
 stringsize = StringLength (set_units);
 ComWrt (SP3_comport, set_units, stringsize); // Send Units Command

 FlushInQ(SP3_comport);
 FlushOutQ(SP3_comport);
 stringsize = StringLength (set_control_rate);
 ComWrt (SP3_comport, set_control_rate, stringsize); // Send Control Rate Command

 DSN_Vent_Pressure(); // Vents the System Pressure

 FlushInQ(SP3_comport); // Clears the In and Out Q
 FlushOutQ(SP3_comport);
 stringsize = StringLength (zero);
 ComWrt (SP3_comport, zero, stringsize); // Send Zero Command

 FlushInQ(SP3_comport);
 FlushOutQ(SP3_comport);
 stringsize = StringLength (notation_code);
 ComWrt (SP3_comport, notation_code, stringsize); // Send Notation Code Command

 FlushInQ(SP3_comport);
 FlushOutQ(SP3_comport);
 stringsize = StringLength (interrupt_code);
 ComWrt (SP3_comport, interrupt_code, stringsize); // Send Interrupt Code Command

 }

 //--
 // DSN_Change_P_Setpoint : Changes the Setpoint
 // : Controls to New Setpoint
 //--

 double DSN_Change_P_Setpoint(double new_p_setpoint)
 {
 char ascii_setpoint[20],
 wholeNum_string[5],
 decNum_string[4];

 char* setpointcode = "P=";
 char* decPoint_string = ".";
 char* start_control = "C1\r";

 double max_pressure = 1450.38; // Maximum pressure allowed by controller

 int wholeNum,
 decNum;

 if(new_p_setpoint <= max_pressure) // Safe Setpoint Pressure
 {
 wholeNum = new_p_setpoint; /* Captures the whole number portion of the setpoint */
 decNum = (new_p_setpoint-wholeNum)*100; /* Captures the 2 decimal places of the setpoint */

 sprintf(wholeNum_string, "%i", wholeNum);
 sprintf(decNum_string, "%i", decNum);
 /* Assembles the Command */
 strcpy(ascii_setpoint, setpointcode); /* P= */
 strcat(ascii_setpoint, wholeNum_string); /* P=XXX */
 strcat(ascii_setpoint, decPoint_string); /* P=XXX. */
 strcat(ascii_setpoint, decNum_string); /* P=XXX.XX */
 strcat(ascii_setpoint, "\r"); /* P=XXX.XX\r */

 FlushInQ(SP3_comport); /* Clears the In and Out Q */
 FlushOutQ(SP3_comport);

 stringsize = StringLength (ascii_setpoint);
 ComWrt (SP3_comport, ascii_setpoint, stringsize); // Sends new setpoint to COM Port

 stringsize = StringLength (start_control);
 ComWrt (SP3_comport, start_control, stringsize); // Controls to New Setpoint

 SetCtrlVal(panelHandle, PANEL_REGULATOR_SETPOINT, new_p_setpoint);
 }
 else
 {
 MessagePopup ("Warning", "Desired Setpoint is Outside Safe Working Pressure of the Controller");
 }
 return 0;
 }

 //--
 // Change_P_Setpoint (Callback) : For manual mode
 // : Calls DSN_Change_P_Setpoint
 //--

 int CVICALLBACK REGULATOR_SETPOINT_CALLBACK (int panel, int control, int event,
 void *callbackData, int eventData1, int eventData2)
 {
 switch (event)
 {
 case EVENT_COMMIT:

155

 GetCtrlVal(panelHandle, PANEL_REGULATOR_SETPOINT,
 &p_setpoint_for_callback); // Retrieve New Value

 DSN_Change_P_Setpoint(p_setpoint_for_callback); // Adjust to New Setpoint

 break;
 case EVENT_RIGHT_CLICK:

 break;
 }
 return 0;
 }

 //--
 // DSN_Vent_Pressure : Slowly vent the system pressure
 //
 //--

 void DSN_Vent_Pressure(void)
 {
 double step_down_pressure, current_pressure;

 char* stop_control = "C0\r";

 int delay,
 vent_steps,
 current_vent_step,
 pressure_per_vent_step = 5; // Vent ??psi per vent step

 DSN_Poll_Current_Pressure();
 current_pressure = PACE_Pressure_Global;

 vent_steps = current_pressure/pressure_per_vent_step;

 for(current_vent_step = 1; current_vent_step <= vent_steps; current_vent_step++)
 {
 step_down_pressure = current_pressure - current_vent_step*pressure_per_vent_step;

 if(step_down_pressure < 0)
 {
 step_down_pressure = 0;
 }

 // Vent pressure in small steps
 DSN_Change_P_Setpoint(step_down_pressure);

 // Change Setpoint Readout
 SetCtrlVal(panelHandle, PANEL_REGULATOR_SETPOINT, step_down_pressure);
 for(delay=1 ; delay <= 10 ; delay++)
 {
 Delay(1);
 DSN_Poll_Current_Pressure();
 ProcessSystemEvents ();
 }
 }

 step_down_pressure = 0;
 DSN_Change_P_Setpoint(step_down_pressure); // Final vent to zero psi
 for(delay=1 ; delay <= 30 ; delay++)
 {
 Delay(1); // Final Vent
 ProcessSystemEvents ();
 }

 // Change Setpoint Readout to Zero
 SetCtrlVal(panelHandle, PANEL_REGULATOR_SETPOINT, 0.00);
 DSN_Poll_Current_Pressure();

 stringsize = StringLength (stop_control);
 ComWrt (SP3_comport, stop_control, stringsize); // Turns off Control Module
 }

 //---
 // DSN_Shut_Down_P_Controller : Vent the System
 // : Set PACE5000 to Local Mode
 //---

 void DSN_Shut_Down_P_Controller(void)
 {
 char* local_mode = "R0\r"; /* Command to Set to Local Mode */

 DSN_Vent_Pressure();

 FlushInQ(SP3_comport); // Clears the In and Out Q
 FlushOutQ(SP3_comport);
 stringsize = StringLength (local_mode);
 ComWrt (SP3_comport, local_mode, stringsize); // Sets control mode at COM Port
 }

 //--
 // DSN_Poll_Pressure_Setpoint : Polls Pressure Setpoint
 //--

 void DSN_Poll_Pressure_Setpoint(void)
 {
 char* data_select = "D1\r"; // Command to set reading to Setpoint
 char* req_reading = "\r", // Command to Request a Reading
 ascii_response[20], // ASCII response to query
 ascii_p_setpoint[20]; // ASCII setpoint

 double pressure_setpoint; // Decimal Value

 FlushInQ(SP3_comport); // Flush the Input and Output Queue
 FlushOutQ(SP3_comport);

 stringsize = StringLength (data_select);
 ComWrt (SP3_comport, data_select, stringsize); // Set Reading to Setpoint

 Delay(0.5); // Delay to allow for end of conversion

 FlushInQ(SP3_comport); // Flush the Input and Output Queue
 FlushOutQ(SP3_comport);

 stringsize = StringLength (req_reading);
 ComWrt (SP3_comport, req_reading, stringsize); // Send Read request to COM Port

156

 ascii_response[0] = '\0';
 bytes_read = ComRdTerm (SP3_comport,
 ascii_response, 7, 13); // Read data from COM Port (7 digits including ".")

 pressure_setpoint = atof(ascii_response); // Convert ASCII to Double Format

 SetCtrlVal(panelHandle, PANEL_REGULATOR_SETPOINT,
 pressure_setpoint); // Updates pressure setpoint on screen

 CmtGetLock (Slow_lockHandle);
 DSN_SHIFT_Slow(5);
 Stat_P_Setpoint[0] = pressure_setpoint; // Log value in Setpoint Array
 CmtReleaseLock (Slow_lockHandle);
 }

 //--
 // DSN_Poll_Current_Pressure : Polls Current Pressure
 //--

 void DSN_Poll_Current_Pressure(void)
 {
 char* data_select = "D0\r"; // Command to set reading to Current Pressure
 char* req_reading = "\r", // Command to Request a Reading
 ascii_response[20], // ASCII response to query
 ascii_current_p[20]; // ASCII setpoint

 double current_pressure; // Decimal Value

 FlushInQ(SP3_comport); // Flush the Input and Output Queue
 FlushOutQ(SP3_comport);

 stringsize = StringLength (data_select);
 ComWrt (SP3_comport, data_select, stringsize); // Set Reading to Current Pressure

 Delay(0.5); // Delay to allow for end of conversion

 FlushInQ(SP3_comport); // Flush the Input and Output Queue
 FlushOutQ(SP3_comport);

 stringsize = StringLength (req_reading);
 ComWrt (SP3_comport, req_reading, stringsize); // Send Read request to COM Port

 Delay(0.5);

 ascii_response[0] = '\0';
 bytes_read = ComRdTerm (SP3_comport,
 ascii_response, 7, 13); // Read data from COM Port (7 digits including ".")

 current_pressure = atof(ascii_response); // Convert ASCII to Double Format
 PACE_Pressure_Global = current_pressure; // Send current pressure to a global variable

 SetCtrlVal(panelHandle, PANEL_REGULATOR_PRESSURE,
 current_pressure); // Updates pressure setpoint on screen

 CmtGetLock (Slow_lockHandle);
 DSN_SHIFT_Slow(7);
 PACE_Pressure[0] = current_pressure; // Log value in PACE_Pressure Array
 CmtReleaseLock (Slow_lockHandle);
 }

 //***********************************
 // Tektronics Function Generator
 //***********************************

 //--
 // DSN_Init_FuncGen : Initializes Function Generator
 //--

 void DSN_Init_FuncGen(void)
 {
 tkafg3k_InitWithOptions ("USB0::0x0699::0x0346::C030622::INSTR", VI_TRUE, VI_TRUE,
 "Simulate=0,RangeCheck=1,QueryInstrStatus=1,Cache=1",
 &tkafg3k);
 }

 //---
 // DSN_Set_FuncGen_Out : Sets Function Generator Output
 //---

 void DSN_Set_FuncGen_Out(void)

 {
 ViReal64 Amplitude_1;
 ViReal64 Frequency_1;

 int wave1; //wavetype
 ViInt32 WaveType1;

 int mode1; //run mode
 ViInt32 ModeType1;

 double phase1; //phase modulation frequency
 ViInt32 PhaseType1;

 ViReal64 phaseangle1; //phase angle
 int mwave_1;

 ViBoolean enablephasemod_1;

 GetCtrlVal (panelHandle, PANEL_VOLTAGE, &Amplitude_1); //get info from gui
 GetCtrlVal (panelHandle, PANEL_FREQUENCY,&Frequency_1);
 GetCtrlVal (panelHandle, PANEL_Waveform_1,&wave1);

 ModeType1 = TKAFG3K_VAL_OPERATE_CONTINUOUS; //set to continuous operation
 phaseangle1 = 0; //set phase angle in degrees
 phase1 = 25000; //set phase modulation frequency in Hz
 PhaseType1 = TKAFG3K_VAL_PM_INTERNAL_SINE; //for the phase modulation waveform
 enablephasemod_1 = VI_FALSE; //disable phase modulation

 switch (wave1) //select desired waveform for channel 1
 {
 case 0:

157

 WaveType1 = TKAFG3K_VAL_WFM_SINE;
 break;
 case 1:
 WaveType1 = TKAFG3K_VAL_WFM_SQUARE;
 break;
 case 2:
 WaveType1 = TKAFG3K_VAL_WFM_RAMP;
 break;
 case 3:
 WaveType1 = TKAFG3K_VAL_WFM_PULS;
 break;
 case 4:
 WaveType1 = TKAFG3K_VAL_WFM_PRN;
 break;
 case 5:
 WaveType1 = TKAFG3K_VAL_WFM_DC;
 break;
 case 6:
 WaveType1 = TKAFG3K_VAL_WFM_SINC;
 break;
 case 7:
 WaveType1 = TKAFG3K_VAL_WFM_GAUS;
 break;
 case 8:
 WaveType1 = TKAFG3K_VAL_WFM_LOR;
 break;
 case 9:
 WaveType1 = TKAFG3K_VAL_WFM_ERIS;
 break;
 case 10:
 WaveType1 = TKAFG3K_VAL_WFM_EDEC;
 break;
 case 11:
 WaveType1 = TKAFG3K_VAL_WFM_HAV;
 break;

 }

 //tkafg3k_ConfigureOutputMode (tkafg3k, TKAFG3K_VAL_OUTPUT_FUNC);
 tkafg3k_ConfigurePMEnabled (tkafg3k, "1", enablephasemod_1);
 tkafg3k_ConfigurePMSource (tkafg3k, "1", TKAFG3K_VAL_PM_INTERNAL);
 tkafg3k_ConfigurePMInternalByChannel (tkafg3k, "1", 90, PhaseType1, phase1);
 tkafg3k_ConfigureOperationMode (tkafg3k, "1", (ViInt32)ModeType1);
 tkafg3k_ConfigureStandardWaveform (tkafg3k, "1", WaveType1, Amplitude_1, 0.0, Frequency_1, phaseangle1);
 }

 //--
 // DSN_Toggle_FuncGen_On : Configures the Output
 // : Sets Function Generator Output On
 //--

 void DSN_Toggle_FuncGen_On(void)

 {
 DSN_Set_FuncGen_Out();
 tkafg3k_ConfigureOutputEnabled (tkafg3k, "1", VI_TRUE);
 SetCtrlVal(panelHandle, PANEL_FUNCGEN_ONOFF, 1);
 }

 //--
 // DSN_Toggle_FuncGen_Off : Sets Function Generator Output Off
 //--

 void DSN_Toggle_FuncGen_Off(void)

 {
 tkafg3k_ConfigureOutputEnabled (tkafg3k, "1", VI_FALSE);
 SetCtrlVal(panelHandle, PANEL_FUNCGEN_ONOFF, 0);
 }

 //--
 // DSN_Read_FuncGen_UI_Output (Callback) : Manual Function Generator Output Toggle
 //--

 int CVICALLBACK Read_FuncGen_UI_Output (int panel, int control, int event,
 void *callbackData, int eventData1, int eventData2)
 {
 int OutputState;

 switch (event)
 {
 case EVENT_COMMIT:

 GetCtrlVal(panelHandle,PANEL_FUNCGEN_ONOFF, &OutputState);

 switch (OutputState) // Set desired output state
 {
 case 0: // Channel 1 Off
 tkafg3k_ConfigureOutputEnabled (tkafg3k, "1", VI_FALSE);
 break;
 case 1: // Channel 1 On
 tkafg3k_ConfigureOutputEnabled (tkafg3k, "1", VI_TRUE);
 break;
 }

 break;
 }
 return 0;
 }

 //---
 // DSN_Read_FuncGen_UI : Reads function generator setpoints on UI
 // : Sends values to the function generator
 //---

 int CVICALLBACK Read_FuncGen_UI (int panel, int control, int event,
 void *callbackData, int eventData1, int eventData2)
 {
 switch (event)
 {
 case EVENT_COMMIT:

 DSN_Set_FuncGen_Out(); //call the function to read the UI values and set the output

158

 break;
 case EVENT_RIGHT_CLICK:

 break;
 }
 return 0;
 }

 /***/
 // .d8888b. 8888888b. d8888 8888888b. 888 888 8888888 888b 888 .d8888b.
 // d88P Y88b 888 Y88b d88888 888 Y88b 888 888 888 8888b 888 d88P Y88b
 // 888 888 888 888 d88P888 888 888 888 888 888 88888b 888 888 888
 // 888 888 d88P d88P 888 888 d88P 8888888888 888 888Y88b 888 888
 // 888 88888 8888888P" d88P 888 8888888P" 888 888 888 888 Y88b888 888 88888
 // 888 888 888 T88b d88P 888 888 888 888 888 888 Y88888 888 888
 // Y88b d88P 888 T88b d8888888888 888 888 888 888 888 Y8888 Y88b d88P
 // "Y8888P88 888 T88b d88P 888 888 888 888 8888888 888 Y888 "Y8888P88
 /***/

 //***
 // OnOff_Graphs : For Turning Graphs ON and OFF (Dimming)
 //***
 int CVICALLBACK OnOff_Graphs (int panel, int control, int event,
 void *callbackData, int eventData1, int eventData2)
 { int test;
 switch (event)
 {
 case EVENT_COMMIT:
 switch(control)
 {
 case G_SETUP_OnOff_G_1:
 GetCtrlVal (g_Handle, G_SETUP_OnOff_G_1, &test);
 if(test)
 {
 SetCtrlAttribute (panelHandle, PANEL_G_1, ATTR_DIMMED, 0);
 OnOff_G1 = 1;
 }
 else
 {
 SetCtrlAttribute (panelHandle, PANEL_G_1, ATTR_DIMMED, 1);
 OnOff_G1 = 0;
 }
 break;
 case G_SETUP_OnOff_G_2:
 GetCtrlVal (g_Handle, G_SETUP_OnOff_G_2, &test);
 if(test)
 {
 SetCtrlAttribute (panelHandle, PANEL_G_2, ATTR_DIMMED, 0);
 OnOff_G2 = 1;
 }
 else
 {
 SetCtrlAttribute (panelHandle, PANEL_G_2, ATTR_DIMMED, 1);
 OnOff_G2 = 0;
 }
 break;
 case G_SETUP_OnOff_G_3:
 GetCtrlVal (g_Handle, G_SETUP_OnOff_G_3, &test);
 if(test)
 {
 SetCtrlAttribute (panelHandle, PANEL_G_3, ATTR_DIMMED, 0);
 OnOff_G3 = 1;
 }
 else
 {
 SetCtrlAttribute (panelHandle, PANEL_G_3, ATTR_DIMMED, 1);
 OnOff_G3 = 0;
 }
 break;
 case G_SETUP_OnOff_G_4:
 GetCtrlVal (g_Handle, G_SETUP_OnOff_G_4, &test);
 if(test)
 {
 SetCtrlAttribute (panelHandle, PANEL_G_4, ATTR_DIMMED, 0);
 OnOff_G4 = 1;
 }
 else
 {
 SetCtrlAttribute (panelHandle, PANEL_G_4, ATTR_DIMMED, 1);
 OnOff_G4 = 0;
 }
 break;
 }
 break;
 case EVENT_RIGHT_CLICK:

 break;
 }
 return 0;
 }

 //***
 // DSN_Graph : Calls Graphing Function and Scales X Axes
 //***
 void DSN_Graph(void)
 {
 // GRAPH #1
 if(OnOff_G1)
 {
 DSN_Graph_Select(plotVar_G_1, PANEL_G_1);
 if(plotVar_G_1>=0)
 {
 SetAxisScalingMode (panelHandle, PANEL_G_1, VAL_XAXIS,
 VAL_MANUAL, step[0]-X_Range_G_1, step[0]);
 if(Y_Mode_G_1)
 SetAxisScalingMode (panelHandle, PANEL_G_1, VAL_LEFT_YAXIS,
 VAL_AUTOSCALE,0 ,0);
 else
 SetAxisScalingMode (panelHandle, PANEL_G_1, VAL_LEFT_YAXIS,
 VAL_MANUAL, Y_Min_G_1, Y_Max_G_1);
 }
 }
 // GRAPH #2

159

 if(OnOff_G2)
 {
 DSN_Graph_Select(plotVar_G_2, PANEL_G_2);
 if(plotVar_G_2>=0)
 {
 SetAxisScalingMode (panelHandle, PANEL_G_2, VAL_XAXIS, VAL_MANUAL,
 step[0]-X_Range_G_2, step[0]);
 if(Y_Mode_G_2)
 SetAxisScalingMode (panelHandle, PANEL_G_2, VAL_LEFT_YAXIS,
 VAL_AUTOSCALE,0 ,0);
 else
 SetAxisScalingMode (panelHandle, PANEL_G_2, VAL_LEFT_YAXIS,
 VAL_MANUAL, Y_Min_G_2, Y_Max_G_2);
 }
 }
 // GRAPH #3
 if(OnOff_G3)
 {
 DSN_Graph_Select(plotVar_G_3, PANEL_G_3);
 if(plotVar_G_3>=0)
 {
 SetAxisScalingMode (panelHandle, PANEL_G_3, VAL_XAXIS, VAL_MANUAL,
 step[0]-X_Range_G_3, step[0]);
 if(Y_Mode_G_3)
 SetAxisScalingMode (panelHandle, PANEL_G_3, VAL_LEFT_YAXIS,
 VAL_AUTOSCALE,0 ,0);
 else
 SetAxisScalingMode (panelHandle, PANEL_G_3, VAL_LEFT_YAXIS,
 VAL_MANUAL, Y_Min_G_3, Y_Max_G_3);
 }
 }
 // GRAPH #4
 if(OnOff_G4)
 {
 DSN_Graph_Select(plotVar_G_4, PANEL_G_4);

 if(plotVar_G_4>=0)
 {
 SetAxisScalingMode (panelHandle, PANEL_G_4, VAL_XAXIS,
 VAL_AUTOSCALE, step[0]-X_Range_G_4, step[0]);
 if(Y_Mode_G_4)
 SetAxisScalingMode (panelHandle, PANEL_G_4, VAL_LEFT_YAXIS,
 VAL_AUTOSCALE,0 ,0);
 else
 SetAxisScalingMode (panelHandle, PANEL_G_4, VAL_LEFT_YAXIS,
 VAL_MANUAL, Y_Min_G_4, Y_Max_G_4);
 }
 }

 return;
 }

 //**
 // DSN_Graph_Select : Plots the Selected Variable
 //**
 void DSN_Graph_Select(int plotVar, int Panel_Graph)
 {
 switch(plotVar)
 { case -1:
 DeleteGraphPlot (panelHandle, Panel_Graph, -1,VAL_IMMEDIATE_DRAW);
 break;
 case 0: // Fluid Bath Temperature & Setpoint
 DeleteGraphPlot (panelHandle, Panel_Graph, -1,VAL_IMMEDIATE_DRAW);
 PlotXY (panelHandle, Panel_Graph, step, Bath_Temp, NUM, VAL_DOUBLE,
 VAL_DOUBLE, VAL_SCATTER, VAL_SOLID_CIRCLE, VAL_SOLID, 1, VAL_RED);
 PlotXY (panelHandle, Panel_Graph, step, Bath_Setpoint, NUM, VAL_DOUBLE,
 VAL_DOUBLE, VAL_FAT_LINE, VAL_EMPTY_SQUARE, VAL_SOLID, 1, VAL_WHITE); // Not Working
 break;
 case 1: // Viscosity
 DeleteGraphPlot (panelHandle, Panel_Graph, -1,VAL_IMMEDIATE_DRAW);
 PlotXY (panelHandle, Panel_Graph, step, Ave_L_Visc, NUM, VAL_DOUBLE, VAL_DOUBLE,
 VAL_SCATTER, VAL_SOLID_CIRCLE, VAL_SOLID, 1, VAL_RED);
 break;
 case 2: // Experiment Stage
 DeleteGraphPlot (panelHandle, Panel_Graph, -1,VAL_IMMEDIATE_DRAW);
 PlotXY (panelHandle, Panel_Graph, step, Logging_Trig_Array, NUM, VAL_DOUBLE,
 VAL_DOUBLE, VAL_FAT_LINE, VAL_EMPTY_SQUARE, VAL_SOLID, 1, VAL_RED);
 break;
 case 3: // Radial Temperature Profile
 DeleteGraphPlot (panelHandle, Panel_Graph, -1,VAL_IMMEDIATE_DRAW);
 PlotXY (panelHandle, Panel_Graph, Key_Radial_Positions, Current_Radial_Temps, 4,
 VAL_DOUBLE, VAL_DOUBLE, VAL_CONNECTED_POINTS, VAL_SOLID_CIRCLE, VAL_DASH, 1, VAL_RED);
 break;
 case 4: //
 DeleteGraphPlot (panelHandle, Panel_Graph, -1,VAL_IMMEDIATE_DRAW);

 break;

 }
 return;
 }
 //***
 // GRAPHS : Call to Setup Graphs Anytime a Value on Graph Panel is Changed
 //***
 int CVICALLBACK DSN_SETUP_G (int panel, int control, int event,
 void *callbackData, int eventData1, int eventData2)
 {
 switch (event)
 {
 case EVENT_COMMIT:
 DSN_GraphSetup();
 break;
 case EVENT_RIGHT_CLICK:

 break;
 }
 return 0;
 }
 //***
 // DSN_GraphSetup : Setup Graph Scaling to Match the Graph Panel Values
 //***
 void DSN_GraphSetup(void)
 {
 // Update the variables from the panels
 DSN_Save_Vars();

160

 //Read Graph #1
 if(Y_Mode_G_1)
 {
 SetCtrlAttribute (g_Handle, G_SETUP_Y_Mode_G_1, ATTR_LABEL_TEXT, "Auto");
 SetCtrlAttribute (g_Handle, G_SETUP_Y_Min_G_1, ATTR_DIMMED, 1);
 SetCtrlAttribute (g_Handle, G_SETUP_Y_Max_G_1, ATTR_DIMMED, 1);
 }
 else
 {
 SetCtrlAttribute (g_Handle, G_SETUP_Y_Mode_G_1, ATTR_LABEL_TEXT, "Fixed");
 SetCtrlAttribute (g_Handle, G_SETUP_Y_Min_G_1, ATTR_DIMMED, 0);
 SetCtrlAttribute (g_Handle, G_SETUP_Y_Max_G_1, ATTR_DIMMED, 0);
 }
 DSN_GraphName(plotVar_G_1, PANEL_G_1,G_SETUP_G1_L_1,G_SETUP_G1_T_1,
 G_SETUP_G1_L_2,G_SETUP_G1_T_2,
 G_SETUP_G1_L_3,G_SETUP_G1_T_3,
 G_SETUP_G1_L_4,G_SETUP_G1_T_4);
 //Read Graph #2
 if(Y_Mode_G_2)
 {
 SetCtrlAttribute (g_Handle, G_SETUP_Y_Mode_G_2, ATTR_LABEL_TEXT, "Auto");
 SetCtrlAttribute (g_Handle, G_SETUP_Y_Min_G_2, ATTR_DIMMED, 1);
 SetCtrlAttribute (g_Handle, G_SETUP_Y_Max_G_2, ATTR_DIMMED, 1);
 }
 else
 {
 SetCtrlAttribute (g_Handle, G_SETUP_Y_Mode_G_2, ATTR_LABEL_TEXT, "Fixed");
 SetCtrlAttribute (g_Handle, G_SETUP_Y_Min_G_2, ATTR_DIMMED, 0);
 SetCtrlAttribute (g_Handle, G_SETUP_Y_Max_G_2, ATTR_DIMMED, 0);
 }
 DSN_GraphName(plotVar_G_2, PANEL_G_2,G_SETUP_G2_L_1,G_SETUP_G2_T_1,
 G_SETUP_G2_L_2,G_SETUP_G2_T_2,
 G_SETUP_G2_L_3,G_SETUP_G2_T_3,
 G_SETUP_G2_L_4,G_SETUP_G2_T_4);
 //Read Graph #3
 if(Y_Mode_G_3)
 {
 SetCtrlAttribute (g_Handle, G_SETUP_Y_Mode_G_3, ATTR_LABEL_TEXT, "Auto");
 SetCtrlAttribute (g_Handle, G_SETUP_Y_Min_G_3, ATTR_DIMMED, 1);
 SetCtrlAttribute (g_Handle, G_SETUP_Y_Max_G_3, ATTR_DIMMED, 1);
 }
 else
 {
 SetCtrlAttribute (g_Handle, G_SETUP_Y_Mode_G_3, ATTR_LABEL_TEXT, "Fixed");
 SetCtrlAttribute (g_Handle, G_SETUP_Y_Min_G_3, ATTR_DIMMED, 0);
 SetCtrlAttribute (g_Handle, G_SETUP_Y_Max_G_3, ATTR_DIMMED, 0);
 }
 DSN_GraphName(plotVar_G_3, PANEL_G_3,G_SETUP_G3_L_1,G_SETUP_G3_T_1,
 G_SETUP_G3_L_2,G_SETUP_G3_T_2,
 G_SETUP_G3_L_3,G_SETUP_G3_T_3,
 G_SETUP_G3_L_4,G_SETUP_G3_T_4);
 //Read Graph #4
 if(Y_Mode_G_4)
 {
 SetCtrlAttribute (g_Handle, G_SETUP_Y_Mode_G_4, ATTR_LABEL_TEXT, "Auto");
 SetCtrlAttribute (g_Handle, G_SETUP_Y_Min_G_4, ATTR_DIMMED, 1);
 SetCtrlAttribute (g_Handle, G_SETUP_Y_Max_G_4, ATTR_DIMMED, 1);
 }
 else
 {
 SetCtrlAttribute (g_Handle, G_SETUP_Y_Mode_G_4, ATTR_LABEL_TEXT, "Fixed");
 SetCtrlAttribute (g_Handle, G_SETUP_Y_Min_G_4, ATTR_DIMMED, 0);
 SetCtrlAttribute (g_Handle, G_SETUP_Y_Max_G_4, ATTR_DIMMED, 0);
 }
 DSN_GraphName(plotVar_G_4, PANEL_G_4,G_SETUP_G4_L_1,G_SETUP_G4_T_1,
 G_SETUP_G4_L_2,G_SETUP_G4_T_2,
 G_SETUP_G4_L_3,G_SETUP_G4_T_3,
 G_SETUP_G4_L_4,G_SETUP_G4_T_4);
 return;
 }

 //***
 // DSN_GraphName : Setup Graph Appearance
 //***
 void DSN_GraphName(int Val, int GRAPH, int L1, int T1, int L2, int T2,
 int L3, int T3, int L4, int T4)
 {
 switch(Val)
 {
 case -1:
 SetCtrlAttribute (panelHandle, GRAPH, ATTR_ACTIVE_YAXIS, VAL_LEFT_YAXIS);
 SetCtrlAttribute (panelHandle, GRAPH, ATTR_YNAME, "Not Plotting");
 SetCtrlAttribute (panelHandle, GRAPH, ATTR_ACTIVE_YAXIS, VAL_RIGHT_YAXIS);
 SetCtrlAttribute (panelHandle, GRAPH, ATTR_YNAME, "");
 SetCtrlAttribute (g_Handle, L1, ATTR_FRAME_COLOR, VAL_LT_GRAY);
 SetCtrlVal (g_Handle, T1, "");
 SetCtrlAttribute (g_Handle, L2, ATTR_FRAME_COLOR, VAL_LT_GRAY);
 SetCtrlVal (g_Handle, T2, "");
 SetCtrlAttribute (g_Handle, L3, ATTR_FRAME_COLOR, VAL_LT_GRAY);
 SetCtrlVal (g_Handle, T3, "");
 SetCtrlAttribute (g_Handle, L4, ATTR_FRAME_COLOR, VAL_LT_GRAY);
 SetCtrlVal (g_Handle, T4, "");
 break;
 case 0: // Fluid Bath Temperature & Setpoint
 SetCtrlAttribute (panelHandle, GRAPH, ATTR_ACTIVE_YAXIS, VAL_LEFT_YAXIS);
 SetCtrlAttribute (panelHandle, GRAPH, ATTR_YNAME, "Bath Temperature [°C]");
 SetCtrlAttribute (g_Handle, L1, ATTR_FRAME_COLOR, VAL_RED);
 SetCtrlVal (g_Handle, T1, "Internal Bath Temp");
 SetCtrlAttribute (g_Handle, L2, ATTR_FRAME_COLOR, VAL_WHITE);
 SetCtrlVal (g_Handle, T2, "Bath Setpoint");
 SetCtrlAttribute (g_Handle, L3, ATTR_FRAME_COLOR, VAL_LT_GRAY);
 SetCtrlVal (g_Handle, T3, "");
 SetCtrlAttribute (g_Handle, L4, ATTR_FRAME_COLOR, VAL_LT_GRAY);
 SetCtrlVal (g_Handle, T4, "");
 break;
 case 1: // Viscosity
 SetCtrlAttribute (panelHandle, GRAPH, ATTR_ACTIVE_YAXIS, VAL_LEFT_YAXIS);
 SetCtrlAttribute (panelHandle, GRAPH, ATTR_YNAME, "Viscosity [cP]");
 SetCtrlAttribute (g_Handle, L1, ATTR_FRAME_COLOR, VAL_RED);
 SetCtrlVal (g_Handle, T1, "Viscosity");
 SetCtrlAttribute (g_Handle, L2, ATTR_FRAME_COLOR, VAL_LT_GRAY);
 SetCtrlVal (g_Handle, T2, "");
 SetCtrlAttribute (g_Handle, L3, ATTR_FRAME_COLOR, VAL_LT_GRAY);
 SetCtrlVal (g_Handle, T3, "");
 SetCtrlAttribute (g_Handle, L4, ATTR_FRAME_COLOR, VAL_LT_GRAY);

161

 SetCtrlVal (g_Handle, T4, "");
 break;
 case 2: // Experiment Stage
 SetCtrlAttribute (panelHandle, GRAPH, ATTR_ACTIVE_YAXIS, VAL_LEFT_YAXIS);
 SetCtrlAttribute (panelHandle, GRAPH, ATTR_YNAME, "Experiment Stage");
 SetCtrlAttribute (g_Handle, L1, ATTR_FRAME_COLOR, VAL_LT_GRAY);
 SetCtrlVal (g_Handle, T1, "0 (Temp), 1 (Active), 2 (Thixo.)");
 SetCtrlAttribute (panelHandle, GRAPH, ATTR_YDIVISIONS, 3);
 SetCtrlAttribute (g_Handle, L2, ATTR_FRAME_COLOR, VAL_RED);
 SetCtrlVal (g_Handle, T2, "");
 SetCtrlAttribute (g_Handle, L3, ATTR_FRAME_COLOR, VAL_LT_GRAY);
 SetCtrlVal (g_Handle, T3, "");
 SetCtrlAttribute (g_Handle, L4, ATTR_FRAME_COLOR, VAL_LT_GRAY);
 SetCtrlVal (g_Handle, T4, "");
 break;
 case 3: // Radial Temperature Profile
 SetCtrlAttribute (panelHandle, GRAPH, ATTR_ACTIVE_YAXIS, VAL_LEFT_YAXIS);
 SetCtrlAttribute (panelHandle, GRAPH, ATTR_YNAME, "Temperature [°C]");
 SetCtrlAttribute (panelHandle, GRAPH, ATTR_ACTIVE_XAXIS, VAL_BOTTOM_XAXIS);
 SetCtrlAttribute (panelHandle, GRAPH, ATTR_XNAME, "Radial Position [mm]");
 SetCtrlAttribute (panelHandle, GRAPH, ATTR_XDIVISIONS, 3);
 SetCtrlAttribute (g_Handle, L1, ATTR_FRAME_COLOR, VAL_RED);
 SetCtrlVal (g_Handle, T1, "Temperature");
 SetCtrlAttribute (g_Handle, L2, ATTR_FRAME_COLOR, VAL_LT_GRAY);
 SetCtrlVal (g_Handle, T2, "");
 SetCtrlAttribute (g_Handle, L3, ATTR_FRAME_COLOR, VAL_LT_GRAY);
 SetCtrlVal (g_Handle, T3, "");
 SetCtrlAttribute (g_Handle, L4, ATTR_FRAME_COLOR, VAL_LT_GRAY);
 SetCtrlVal (g_Handle, T4, "");
 break;
 case 4:
 SetCtrlAttribute (panelHandle, GRAPH, ATTR_ACTIVE_YAXIS, VAL_LEFT_YAXIS);
 SetCtrlAttribute (panelHandle, GRAPH, ATTR_YNAME, "");
 SetCtrlAttribute (g_Handle, L1, ATTR_FRAME_COLOR, VAL_LT_GRAY);
 SetCtrlVal (g_Handle, T1, "");
 SetCtrlAttribute (g_Handle, L2, ATTR_FRAME_COLOR, VAL_LT_GRAY);
 SetCtrlVal (g_Handle, T2, "");
 SetCtrlAttribute (g_Handle, L3, ATTR_FRAME_COLOR, VAL_LT_GRAY);
 SetCtrlVal (g_Handle, T3, "");
 SetCtrlAttribute (g_Handle, L4, ATTR_FRAME_COLOR, VAL_LT_GRAY);
 SetCtrlVal (g_Handle, T4, "");
 break;
 }
 return;
 }

 /**/
 // .d8888b. .d88888b. 888b d888 .d8888b. 8888888888 88888888888 888 888 8888888b.
 // d88P Y88b d88P" "Y88b 8888b d8888 d88P Y88b 888 888 888 888 888 Y88b
 // 888 888 888 888 88888b.d88888 Y88b. 888 888 888 888 888 888
 // 888 888 888 888Y88888P888 "Y888b. 8888888 888 888 888 888 d88P
 // 888 888 888 888 Y888P 888 "Y88b. 888 888 888 888 8888888P"
 // 888 888 888 888 888 Y8P 888 "888 888 888 888 888 888
 // Y88b d88P Y88b. .d88P 888 " 888 Y88b d88P 888 888 Y88b. .d88P 888
 // "Y8888P" "Y88888P" 888 888 "Y8888P" 8888888888 888 "Y88888P" 888
 /**/

 //**//
 // COM #1 - Cole Parmer Fluid Bath //
 //**//
 //--
 // SP_OPEN : Call to Open the Com Port
 //--
 int CVICALLBACK SP_OPEN (int panel, int control, int event,
 void *callbackData, int eventData1, int eventData2)
 {
 switch (event)
 {
 case EVENT_COMMIT:
 DSN_SP_OPEN();
 break;
 case EVENT_RIGHT_CLICK:
 break;
 }
 return 0;
 }
 //--
 // DSN_SP_OPEN : Opens the com port
 //--
 void DSN_SP_OPEN(void)
 { int test;
 SetCtrlVal (com_Handle, COM_SP_STRING_1, '\0');
 SetCtrlVal (com_Handle, COM_SP_STRING_2, '\0');
 SetCtrlVal (com_Handle, COM_SP_STRING_3, '\0');
 SetCtrlVal (com_Handle, COM_SP_STRING_4, '\0');
 rmd2[0]='\0';
 DSN_GetSPConfig();

 SP_port_open = 0; /* initialize flag to 0 - unopened */
 DisableBreakOnLibraryErrors ();
 RS232Error = OpenComConfig (SP_comport, "", SP_baudrate, SP_parity,
 SP_databits, SP_stopbits, SP_inputq, SP_outputq);
 SetCtrlVal (com_Handle, COM_NUM, RS232Error);
 EnableBreakOnLibraryErrors ();

 if (RS232Error)
 {
 DisplayRS232Error ();
 }
 else
 {
 SP_port_open = 1;
 SetCtrlVal (com_Handle, COM_NUM, SP_port_open);
 GetCtrlVal (com_Handle, COM_SP_XMODE, &SP_xmode);
 SetXMode (SP_comport, SP_xmode);
 GetCtrlVal (com_Handle, COM_SP_CTS, &SP_ctsmode);
 SetCTSMode (SP_comport, SP_ctsmode);
 GetCtrlVal (com_Handle, COM_SP_TIMEOUT, &SP_timeout);
 SetComTime (SP_comport, SP_timeout);
 }

 //SetCtrlVal (com_Handle, COM_SP_STRING_2, rmd2);

 if (SP_port_open)
 {

162

 SetCtrlAttribute (com_Handle, COM_SP_LED, ATTR_DIMMED, 0);
 SetCtrlAttribute (panelHandle, PANEL_SP_LED, ATTR_DIMMED, 0);

 test=1;
 if(test)
 {
 SetCtrlVal (com_Handle, COM_SP_LED, 1);
 SetCtrlVal (panelHandle, PANEL_SP_LED, 1);
 }
 else
 {
 SetCtrlVal (com_Handle, COM_SP_LED, 0);
 SetCtrlVal (panelHandle, PANEL_SP_LED, 0);
 }

 }

 return;
 }
 //--
 // DSN_GetSPConfig : Gets COM Configuration from Panel
 //--
 void DSN_GetSPConfig (void)
 {

 DSN_Save_Vars();

 #ifdef _NI_unix_
 SP_devicename[0]=0;
 #else
 GetLabelFromIndex (com_Handle, COM_SP_COM, SP_portindex,
 SP_devicename);
 #endif
 }

 //**//
 // COM #2 - Viscojet Viscometer //
 //**//
 //--
 // SP2_OPEN : Call to Open the Com Port
 //--
 int CVICALLBACK SP2_OPEN (int panel, int control, int event,
 void *callbackData, int eventData1, int eventData2)
 {
 switch (event)
 {
 case EVENT_COMMIT:
 DSN_SP2_OPEN();
 break;
 case EVENT_RIGHT_CLICK:
 break;
 }
 return 0;
 }
 //--
 // DSN_SP2_OPEN : Opens the com port
 //--
 void DSN_SP2_OPEN(void)
 { int test;
 SetCtrlVal (com_Handle, COM_SP_STRING_1, '\0');
 SetCtrlVal (com_Handle, COM_SP_STRING_2, '\0');
 SetCtrlVal (com_Handle, COM_SP_STRING_3, '\0');
 SetCtrlVal (com_Handle, COM_SP_STRING_4, '\0');
 rmd2[0]='\0';
 DSN_GetSP2Config();

 SP2_port_open = 0; /* initialize flag to 0 - unopened */
 DisableBreakOnLibraryErrors ();
 RS232Error = OpenComConfig (SP2_comport, "", SP2_baudrate, SP2_parity,
 SP2_databits, SP2_stopbits, SP2_inputq, SP2_outputq);
 SetCtrlVal (com_Handle, COM_NUM, RS232Error);
 EnableBreakOnLibraryErrors ();

 if (RS232Error)
 {
 DisplayRS232Error ();
 }
 else
 {
 SP2_port_open = 1;
 SetCtrlVal (com_Handle, COM_NUM, SP2_port_open);
 GetCtrlVal (com_Handle, COM_SP_XMODE_2, &SP2_xmode);
 SetXMode (SP2_comport, SP2_xmode);
 GetCtrlVal (com_Handle, COM_SP_CTS_2, &SP2_ctsmode);
 SetCTSMode (SP2_comport, SP2_ctsmode);
 GetCtrlVal (com_Handle, COM_SP_TIMEOUT_2, &SP2_timeout);
 SetComTime (SP2_comport, SP2_timeout);
 }

 //SetCtrlVal (com_Handle, COM_SP2_STRING_2, rmd2);

 if (SP2_port_open)
 {
 SetCtrlAttribute (com_Handle, COM_SP_LED_2, ATTR_DIMMED, 0);
 SetCtrlAttribute (panelHandle, PANEL_SP_LED_2, ATTR_DIMMED, 0);

 test=1;
 if(test)
 {
 SetCtrlVal (com_Handle, COM_SP_LED_2, 1);
 SetCtrlVal (panelHandle, PANEL_SP_LED_2, 1);
 }
 else
 {
 SetCtrlVal (com_Handle, COM_SP_LED_2, 0);
 SetCtrlVal (panelHandle, PANEL_SP_LED_2, 0);
 }

 }

 return;
 }
 //--

163

 // DSN_GetSP2Config : Gets COM Configuration from Panel
 //--
 void DSN_GetSP2Config (void)
 {

 DSN_Save_Vars();

 #ifdef _NI_unix_
 SP2_devicename[0]=0;
 #else
 GetLabelFromIndex (com_Handle, COM_SP_COM_2, SP2_portindex,
 SP2_devicename);
 #endif
 }

 //**//
 // COM #3 - GE Pressure Controller //
 //**//
 //--
 // SP3_OPEN : Call to Open the Com Port
 //--
 int CVICALLBACK SP3_OPEN (int panel, int control, int event,
 void *callbackData, int eventData1, int eventData2)
 {
 switch (event)
 {
 case EVENT_COMMIT:
 DSN_SP3_OPEN();
 break;
 case EVENT_RIGHT_CLICK:
 break;
 }
 return 0;
 }
 //--
 // DSN_SP3_OPEN : Opens the com port
 //--
 void DSN_SP3_OPEN(void)
 { int test;
 SetCtrlVal (com_Handle, COM_SP_STRING_1, '\0');
 SetCtrlVal (com_Handle, COM_SP_STRING_2, '\0');
 SetCtrlVal (com_Handle, COM_SP_STRING_3, '\0');
 SetCtrlVal (com_Handle, COM_SP_STRING_4, '\0');
 rmd2[0]='\0';
 DSN_GetSP3Config();

 SP3_port_open = 0; /* initialize flag to 0 - unopened */
 DisableBreakOnLibraryErrors ();
 RS232Error = OpenComConfig (SP3_comport, "", SP3_baudrate, SP3_parity,
 SP3_databits, SP3_stopbits, SP3_inputq, SP3_outputq);
 SetCtrlVal (com_Handle, COM_NUM, RS232Error);
 EnableBreakOnLibraryErrors ();

 if (RS232Error)
 {
 DisplayRS232Error ();
 }
 else
 {
 SP3_port_open = 1;
 SetCtrlVal (com_Handle, COM_NUM, SP3_port_open);
 GetCtrlVal (com_Handle, COM_SP_XMODE_3, &SP3_xmode);
 SetXMode (SP3_comport, SP3_xmode);
 GetCtrlVal (com_Handle, COM_SP_CTS_3, &SP3_ctsmode);
 SetCTSMode (SP3_comport, SP3_ctsmode);
 GetCtrlVal (com_Handle, COM_SP_TIMEOUT_3, &SP3_timeout);
 SetComTime (SP3_comport, SP3_timeout);
 }

 //SetCtrlVal (com_Handle, COM_SP3_STRING_3, rmd3);

 if (SP3_port_open)
 {
 SetCtrlAttribute (com_Handle, COM_SP_LED_3, ATTR_DIMMED, 0);
 SetCtrlAttribute (panelHandle, PANEL_SP_LED_3, ATTR_DIMMED, 0);

 test=1;
 if(test)
 {
 SetCtrlVal (com_Handle, COM_SP_LED_3, 1);
 SetCtrlVal (panelHandle, PANEL_SP_LED_3, 1);
 }
 else
 {
 SetCtrlVal (com_Handle, COM_SP_LED_3, 0);
 SetCtrlVal (panelHandle, PANEL_SP_LED_3, 0);
 }

 }

 return;
 }
 //--
 // DSN_GetSP3Config : Gets COM Configuration from Panel
 //--
 void DSN_GetSP3Config (void)
 {

 DSN_Save_Vars();

 #ifdef _NI_unix_
 SP3_devicename[0]=0;
 #else
 GetLabelFromIndex (com_Handle, COM_SP_COM_3, SP3_portindex,
 SP3_devicename);
 #endif
 }

 //**//
 // DisplayRS232Error : Display error information to the user. //
 //**//
 void DisplayRS232Error (void)
 {
 char ErrorMessage[200];

164

 switch (RS232Error)
 {
 default :
 if (RS232Error < 0)
 {
 Fmt (ErrorMessage, "%s<RS232 error number %i", RS232Error);
 MessagePopup ("RS232 Message", ErrorMessage);
 }
 break;
 case 0 :
 MessagePopup ("RS232 Message", "No errors.");
 break;
 case -2 :
 Fmt (ErrorMessage, "%s", "Connection failed. \n"
 "Check port settings.");
 MessagePopup ("RS232 Message", ErrorMessage);
 break;
 case -3 :
 Fmt (ErrorMessage, "%s", "No port is open.\n"
 "Check port settings.");
 MessagePopup ("RS232 Message", ErrorMessage);
 break;
 case -99 :
 Fmt (ErrorMessage, "%s", "Timeout error.\n"
 "Check port settings.");
 MessagePopup ("RS232 Message", ErrorMessage);
 break;
 }
 }

 /**/
 // .d8888b. .d88888b. 888b 888 8888888888 8888888 .d8888b. 8888888888 8888888 888 8888888888
 // d88P Y88b d88P" "Y88b 8888b 888 888 888 d88P Y88b 888 888 888 888
 // 888 888 888 888 88888b 888 888 888 888 888 888 888 888 888
 // 888 888 888 888Y88b 888 8888888 888 888 8888888 888 888 8888888
 // 888 888 888 888 Y88b888 888 888 888 88888 888 888 888 888
 // 888 888 888 888 888 Y88888 888 888 888 888 888 888 888 888
 // Y88b d88P Y88b. .d88P 888 Y8888 888 888 Y88b d88P 888 888 888 888
 // "Y8888P" "Y88888P" 888 Y888 888 8888888 "Y8888P88 888 8888888 88888888 8888888888
 /**/

 //**
 // Load_Config : Load variables from config file
 // : Update screen from variables
 //**
 void CVICALLBACK Load_Config (int menuBar, int menuItem, void *callbackData,
 int panel)
 {
 DSN_Load_Config();
 DSN_Load_Vars();
 DSN_Update_Graphics();
 }
 //**
 // Save_Config : Save screen to variables
 // : Save variables to config file
 //**
 void CVICALLBACK Save_Config (int menuBar, int menuItem, void *callbackData,
 int panel)
 {
 DSN_Save_Vars();
 DSN_Save_Config(0);
 }
 //**
 // Save_Config_As : Save screen to variables
 // : Save variables to config file
 // : Allow the config file to be selected
 //**
 void CVICALLBACK Save_Config_As (int menuBar, int menuItem, void *callbackData,
 int panel)
 {
 DSN_Save_Vars();
 DSN_Save_Config(1);
 }
 //**
 // DSN_Save_Vars : Save screen to variables
 //**
 void DSN_Save_Vars(void)
 { int i;
 double J_temp,ALPHA_temp;

 // MAIN PANEL

 // COM Ports
 GetCtrlVal(panelHandle, PANEL_LOG_COM3, &Is_COM3);
 GetCtrlVal(panelHandle, PANEL_LOG_COM2, &Is_COM2);
 GetCtrlVal(panelHandle, PANEL_LOG_COM1, &Is_COM1);
 GetCtrlVal(panelHandle, PANEL_LOG_DAQ, &Is_DAQ);
 GetCtrlVal(panelHandle, PANEL_LOG_FUNCTION_GEN, &Is_Function_Gen);
 GetCtrlVal(panelHandle, PANEL_LOG_Graph, &Is_Graph);
 GetCtrlVal(panelHandle, PANEL_LOG_LOGtoFile, &Is_Log);
 // A Sensors
 GetCtrlVal(panelHandle, PANEL_SENSOR_SELECT_1A, &Is_S1A);
 GetCtrlVal(panelHandle, PANEL_SENSOR_SELECT_2A, &Is_S2A);
 GetCtrlVal(panelHandle, PANEL_SENSOR_SELECT_3A, &Is_S3A);
 GetCtrlVal(panelHandle, PANEL_SENSOR_SELECT_4A, &Is_S4A);
 GetCtrlVal(panelHandle, PANEL_SENSOR_SELECT_5A, &Is_S5A);
 GetCtrlVal(panelHandle, PANEL_SENSOR_SELECT_6A, &Is_S6A);
 GetCtrlVal(panelHandle, PANEL_SENSOR_SELECT_7A, &Is_S7A);
 GetCtrlVal(panelHandle, PANEL_SENSOR_SELECT_8A, &Is_S8A);
 GetCtrlVal(panelHandle, PANEL_SENSOR_SELECT_9A, &Is_S9A);
 // B Sensors
 GetCtrlVal(panelHandle, PANEL_SENSOR_SELECT_1B, &Is_S1B);
 GetCtrlVal(panelHandle, PANEL_SENSOR_SELECT_2B, &Is_S2B);
 GetCtrlVal(panelHandle, PANEL_SENSOR_SELECT_3B, &Is_S3B);
 GetCtrlVal(panelHandle, PANEL_SENSOR_SELECT_4B, &Is_S4B);
 GetCtrlVal(panelHandle, PANEL_SENSOR_SELECT_5B, &Is_S5B);
 GetCtrlVal(panelHandle, PANEL_SENSOR_SELECT_6B, &Is_S6B);
 GetCtrlVal(panelHandle, PANEL_SENSOR_SELECT_7B, &Is_S7B);
 GetCtrlVal(panelHandle, PANEL_SENSOR_SELECT_8B, &Is_S8B);
 GetCtrlVal(panelHandle, PANEL_SENSOR_SELECT_9B, &Is_S9B);
 // Sensor Positions
 DSN_Get_Sensor_Positions();
 // Equipment Setup
 GetCtrlVal(panelHandle, PANEL_EXP_TYPE, &Exp_Type);
 GetCtrlVal(panelHandle, PANEL_RUN_MODE, &Run_Mode);

165

 // GRAPH PANEL
 //Read Graph #1
 GetCtrlVal(g_Handle, G_SETUP_Var_G_1, &plotVar_G_1);
 GetCtrlVal(g_Handle, G_SETUP_X_Range_G_1, &X_Range_G_1);
 GetCtrlVal(g_Handle, G_SETUP_Y_Mode_G_1, &Y_Mode_G_1);
 GetCtrlVal(g_Handle, G_SETUP_Y_Min_G_1, &Y_Min_G_1);
 GetCtrlVal(g_Handle, G_SETUP_Y_Max_G_1, &Y_Max_G_1);
 if (Y_Min_G_1 >= Y_Max_G_1)
 Y_Min_G_1 = Y_Max_G_1-0.5;
 SetCtrlVal(g_Handle, G_SETUP_Y_Min_G_1, Y_Min_G_1);
 //Read Graph #2
 GetCtrlVal(g_Handle, G_SETUP_Var_G_2, &plotVar_G_2);
 GetCtrlVal(g_Handle, G_SETUP_X_Range_G_2, &X_Range_G_2);
 GetCtrlVal(g_Handle, G_SETUP_Y_Mode_G_2, &Y_Mode_G_2);
 GetCtrlVal(g_Handle, G_SETUP_Y_Min_G_2, &Y_Min_G_2);
 GetCtrlVal(g_Handle, G_SETUP_Y_Max_G_2, &Y_Max_G_2);
 if (Y_Min_G_2 >= Y_Max_G_2)
 Y_Min_G_2 = Y_Max_G_2-0.5;
 SetCtrlVal(g_Handle, G_SETUP_Y_Min_G_2, Y_Min_G_2);
 //Read Graph #3
 GetCtrlVal(g_Handle, G_SETUP_Var_G_3, &plotVar_G_3);
 GetCtrlVal(g_Handle, G_SETUP_X_Range_G_3, &X_Range_G_3);
 GetCtrlVal(g_Handle, G_SETUP_Y_Mode_G_3, &Y_Mode_G_3);
 GetCtrlVal(g_Handle, G_SETUP_Y_Min_G_3, &Y_Min_G_3);
 GetCtrlVal(g_Handle, G_SETUP_Y_Max_G_3, &Y_Max_G_3);
 if (Y_Min_G_3 >= Y_Max_G_3)
 Y_Min_G_3 = Y_Max_G_3-0.5;
 SetCtrlVal(g_Handle, G_SETUP_Y_Min_G_3, Y_Min_G_3);
 //Read Graph #4
 GetCtrlVal(g_Handle, G_SETUP_Var_G_4, &plotVar_G_4);
 GetCtrlVal(g_Handle, G_SETUP_X_Range_G_4, &X_Range_G_4);
 GetCtrlVal(g_Handle, G_SETUP_Y_Mode_G_4, &Y_Mode_G_4);
 GetCtrlVal(g_Handle, G_SETUP_Y_Min_G_4, &Y_Min_G_4);
 GetCtrlVal(g_Handle, G_SETUP_Y_Max_G_4, &Y_Max_G_4);
 if (Y_Min_G_4 >= Y_Max_G_4)
 Y_Min_G_4 = Y_Max_G_4-0.5;
 SetCtrlVal(g_Handle, G_SETUP_Y_Min_G_4, Y_Min_G_4);

 // COM PANEL
 GetCtrlVal(com_Handle, COM_SP_COM, &SP_comport);
 GetCtrlVal(com_Handle, COM_SP_BR, &SP_baudrate);
 GetCtrlVal(com_Handle, COM_SP_P, &SP_parity);
 GetCtrlVal(com_Handle, COM_SP_DB, &SP_databits);
 GetCtrlVal(com_Handle, COM_SP_SB, &SP_stopbits);
 GetCtrlVal(com_Handle, COM_SP_INPUTQ, &SP_inputq);
 GetCtrlVal(com_Handle, COM_SP_OUTPUTQ, &SP_outputq);
 GetCtrlIndex(com_Handle, COM_SP_COM, &SP_portindex);

 GetCtrlVal(com_Handle, COM_SP_COM_2, &SP2_comport);
 GetCtrlVal(com_Handle, COM_SP_BR_2, &SP2_baudrate);
 GetCtrlVal(com_Handle, COM_SP_P_2, &SP2_parity);
 GetCtrlVal(com_Handle, COM_SP_DB_2, &SP2_databits);
 GetCtrlVal(com_Handle, COM_SP_SB_2, &SP2_stopbits);
 GetCtrlVal(com_Handle, COM_SP_INPUTQ_2, &SP2_inputq);
 GetCtrlVal(com_Handle, COM_SP_OUTPUTQ_2, &SP2_outputq);
 GetCtrlIndex(com_Handle, COM_SP_COM_2, &SP2_portindex);

 GetCtrlVal(com_Handle, COM_SP_COM_3, &SP3_comport);
 GetCtrlVal(com_Handle, COM_SP_BR_3, &SP3_baudrate);
 GetCtrlVal(com_Handle, COM_SP_P_3, &SP3_parity);
 GetCtrlVal(com_Handle, COM_SP_DB_3, &SP3_databits);
 GetCtrlVal(com_Handle, COM_SP_SB_3, &SP3_stopbits);
 GetCtrlVal(com_Handle, COM_SP_INPUTQ_3, &SP3_inputq);
 GetCtrlVal(com_Handle, COM_SP_OUTPUTQ_3, &SP3_outputq);
 GetCtrlIndex(com_Handle, COM_SP_COM_3, &SP3_portindex);

 // TEST PARAMETERS
 GetCtrlVal(panelHandle, PANEL_P_MIN_SP, &P_Min_SP);
 GetCtrlVal(panelHandle, PANEL_P_MAX_SP, &P_Max_SP);
 GetCtrlVal(panelHandle, PANEL_P_SP_INCREMENTS, &P_SP_Increments);

 GetCtrlVal(panelHandle, PANEL_P_MAX_T, &P_Max_T);
 GetCtrlVal(panelHandle, PANEL_P_MIN_T, &P_Min_T);
 GetCtrlVal(panelHandle, PANEL_P_T_INCREMENTS, &P_T_Increments);

 GetCtrlVal(panelHandle, PANEL_DP_STIM_DURATION, &DP_Stim_Duration);
 GetCtrlVal(panelHandle, PANEL_MTS_SPAN, &MTS_Span);

 GetCtrlVal(panelHandle, PANEL_P_F_INCREMENTS, &P_F_Increments);
 GetCtrlVal(panelHandle, PANEL_P_MAX_F, &P_Max_F);
 GetCtrlVal(panelHandle, PANEL_P_MIN_F, &P_Min_F);
 GetCtrlVal(panelHandle, PANEL_DWELL_TIME, &StimDwellTime);

 GetCtrlVal(panelHandle, PANEL_P_DP_AMP_1, &DP_Amp_Array_Save[0]);
 GetCtrlVal(panelHandle, PANEL_P_DP_AMP_2, &DP_Amp_Array_Save[1]);
 GetCtrlVal(panelHandle, PANEL_P_DP_AMP_3, &DP_Amp_Array_Save[2]);
 GetCtrlVal(panelHandle, PANEL_P_DP_AMP_4, &DP_Amp_Array_Save[3]);
 GetCtrlVal(panelHandle, PANEL_P_DP_AMP_5, &DP_Amp_Array_Save[4]);
 GetCtrlVal(panelHandle, PANEL_FUNC_GEN_VOLT_1, &FuncGenVolt_Array_Save[0]);
 GetCtrlVal(panelHandle, PANEL_FUNC_GEN_VOLT_2, &FuncGenVolt_Array_Save[1]);
 GetCtrlVal(panelHandle, PANEL_FUNC_GEN_VOLT_3, &FuncGenVolt_Array_Save[2]);
 GetCtrlVal(panelHandle, PANEL_FUNC_GEN_VOLT_4, &FuncGenVolt_Array_Save[3]);
 GetCtrlVal(panelHandle, PANEL_FUNC_GEN_VOLT_5, &FuncGenVolt_Array_Save[4]);

 GetCtrlVal(panelHandle, PANEL_Amp_On_1, &Amp_On_1);
 GetCtrlVal(panelHandle, PANEL_Amp_On_2, &Amp_On_2);
 GetCtrlVal(panelHandle, PANEL_Amp_On_3, &Amp_On_3);
 GetCtrlVal(panelHandle, PANEL_Amp_On_4, &Amp_On_4);
 GetCtrlVal(panelHandle, PANEL_Amp_On_5, &Amp_On_5);

 return;
 }
 //**
 // DSN_Load_Vars : Load variables to the screen
 //**
 void DSN_Load_Vars(void)
 {
 // MAIN PANEL

 //COM Ports
 SetCtrlVal(panelHandle, PANEL_LOG_COM3, Is_COM3);
 SetCtrlVal(panelHandle, PANEL_LOG_COM2, Is_COM2);
 SetCtrlVal(panelHandle, PANEL_LOG_COM1, Is_COM1);

166

 SetCtrlVal(panelHandle, PANEL_LOG_DAQ, Is_DAQ);
 SetCtrlVal(panelHandle, PANEL_LOG_FUNCTION_GEN, Is_Function_Gen);
 SetCtrlVal(panelHandle, PANEL_LOG_Graph, Is_Graph);
 SetCtrlVal(panelHandle, PANEL_LOG_LOGtoFile, Is_Log);

 // GRAPH PANEL

 //Read Graph #1
 SetCtrlVal(g_Handle, G_SETUP_Var_G_1, plotVar_G_1);
 SetCtrlVal(g_Handle, G_SETUP_X_Range_G_1, X_Range_G_1);
 SetCtrlVal(g_Handle, G_SETUP_Y_Mode_G_1, Y_Mode_G_1);
 SetCtrlVal(g_Handle, G_SETUP_Y_Min_G_1, Y_Min_G_1);
 SetCtrlVal(g_Handle, G_SETUP_Y_Max_G_1, Y_Max_G_1);
 //Read Graph #2
 SetCtrlVal(g_Handle, G_SETUP_Var_G_2, plotVar_G_2);
 SetCtrlVal(g_Handle, G_SETUP_X_Range_G_2, X_Range_G_2);
 SetCtrlVal(g_Handle, G_SETUP_Y_Mode_G_2, Y_Mode_G_2);
 SetCtrlVal(g_Handle, G_SETUP_Y_Min_G_2, Y_Min_G_2);
 SetCtrlVal(g_Handle, G_SETUP_Y_Max_G_2, Y_Max_G_2);
 //Read Graph #3
 SetCtrlVal(g_Handle, G_SETUP_Var_G_3, plotVar_G_3);
 SetCtrlVal(g_Handle, G_SETUP_X_Range_G_3, X_Range_G_3);
 SetCtrlVal(g_Handle, G_SETUP_Y_Mode_G_3, Y_Mode_G_3);
 SetCtrlVal(g_Handle, G_SETUP_Y_Min_G_3, Y_Min_G_3);
 SetCtrlVal(g_Handle, G_SETUP_Y_Max_G_3, Y_Max_G_3);
 //Read Graph #4
 SetCtrlVal(g_Handle, G_SETUP_Var_G_4, plotVar_G_4);
 SetCtrlVal(g_Handle, G_SETUP_X_Range_G_4, X_Range_G_4);
 SetCtrlVal(g_Handle, G_SETUP_Y_Mode_G_4, Y_Mode_G_4);
 SetCtrlVal(g_Handle, G_SETUP_Y_Min_G_4, Y_Min_G_4);
 SetCtrlVal(g_Handle, G_SETUP_Y_Max_G_4, Y_Max_G_4);

 // A Sensors
 SetCtrlVal(panelHandle, PANEL_SENSOR_SELECT_1A, Is_S1A);
 SetCtrlVal(panelHandle, PANEL_SENSOR_SELECT_2A, Is_S2A);
 SetCtrlVal(panelHandle, PANEL_SENSOR_SELECT_3A, Is_S3A);
 SetCtrlVal(panelHandle, PANEL_SENSOR_SELECT_4A, Is_S4A);
 SetCtrlVal(panelHandle, PANEL_SENSOR_SELECT_5A, Is_S5A);
 SetCtrlVal(panelHandle, PANEL_SENSOR_SELECT_6A, Is_S6A);
 SetCtrlVal(panelHandle, PANEL_SENSOR_SELECT_7A, Is_S7A);
 SetCtrlVal(panelHandle, PANEL_SENSOR_SELECT_8A, Is_S8A);
 SetCtrlVal(panelHandle, PANEL_SENSOR_SELECT_9A, Is_S9A);
 // B Sensors
 SetCtrlVal(panelHandle, PANEL_SENSOR_SELECT_1B, Is_S1B);
 SetCtrlVal(panelHandle, PANEL_SENSOR_SELECT_2B, Is_S2B);
 SetCtrlVal(panelHandle, PANEL_SENSOR_SELECT_3B, Is_S3B);
 SetCtrlVal(panelHandle, PANEL_SENSOR_SELECT_4B, Is_S4B);
 SetCtrlVal(panelHandle, PANEL_SENSOR_SELECT_5B, Is_S5B);
 SetCtrlVal(panelHandle, PANEL_SENSOR_SELECT_6B, Is_S6B);
 SetCtrlVal(panelHandle, PANEL_SENSOR_SELECT_7B, Is_S7B);
 SetCtrlVal(panelHandle, PANEL_SENSOR_SELECT_8B, Is_S8B);
 SetCtrlVal(panelHandle, PANEL_SENSOR_SELECT_9B, Is_S9B);
 // Sensor Positions
 SetCtrlVal(panelHandle, PANEL_S1A_POSITION, S1A_Pos[0]);
 SetCtrlVal(panelHandle, PANEL_S2A_POSITION, S2A_Pos[0]);
 SetCtrlVal(panelHandle, PANEL_S3A_POSITION, S3A_Pos[0]);
 SetCtrlVal(panelHandle, PANEL_S4A_POSITION, S4A_Pos[0]);
 SetCtrlVal(panelHandle, PANEL_S5A_POSITION, S5A_Pos[0]);
 SetCtrlVal(panelHandle, PANEL_S6A_POSITION, S6A_Pos[0]);
 SetCtrlVal(panelHandle, PANEL_S7A_POSITION, S7A_Pos[0]);
 SetCtrlVal(panelHandle, PANEL_S8A_POSITION, S8A_Pos[0]);
 SetCtrlVal(panelHandle, PANEL_S9A_POSITION, S9A_Pos[0]);
 SetCtrlVal(panelHandle, PANEL_S1B_POSITION, S1B_Pos[0]);
 SetCtrlVal(panelHandle, PANEL_S2B_POSITION, S2B_Pos[0]);
 SetCtrlVal(panelHandle, PANEL_S3B_POSITION, S3B_Pos[0]);
 SetCtrlVal(panelHandle, PANEL_S4B_POSITION, S4B_Pos[0]);
 SetCtrlVal(panelHandle, PANEL_S5B_POSITION, S5B_Pos[0]);
 SetCtrlVal(panelHandle, PANEL_S6B_POSITION, S6B_Pos[0]);
 SetCtrlVal(panelHandle, PANEL_S7B_POSITION, S7B_Pos[0]);
 SetCtrlVal(panelHandle, PANEL_S8B_POSITION, S8B_Pos[0]);
 SetCtrlVal(panelHandle, PANEL_S9B_POSITION, S9B_Pos[0]);
 // Sensor Position Array
 Key_Radial_Positions[0] = S8B_Pos[0];
 Key_Radial_Positions[1] = S8A_Pos[0];
 Key_Radial_Positions[2] = S7B_Pos[0];
 Key_Radial_Positions[3] = S7A_Pos[0];
 // Equipment Setup
 SetCtrlVal(panelHandle, PANEL_EXP_TYPE, Exp_Type);
 SetCtrlVal(panelHandle, PANEL_RUN_MODE, Run_Mode);

 // COM PANEL
 SetCtrlVal(com_Handle, COM_SP_COM, SP_comport);
 SetCtrlVal(com_Handle, COM_SP_BR, SP_baudrate);
 SetCtrlVal(com_Handle, COM_SP_P, SP_parity);
 SetCtrlVal(com_Handle, COM_SP_DB, SP_databits);
 SetCtrlVal(com_Handle, COM_SP_SB, SP_stopbits);
 SetCtrlVal(com_Handle, COM_SP_INPUTQ, SP_inputq);
 SetCtrlVal(com_Handle, COM_SP_OUTPUTQ, SP_outputq);
 //SetCtrlIndex(com_Handle, COM_SP_COM, SP_portindex);

 SetCtrlVal(com_Handle, COM_SP_COM_2, SP2_comport);
 SetCtrlVal(com_Handle, COM_SP_BR_2, SP2_baudrate);
 SetCtrlVal(com_Handle, COM_SP_P_2, SP2_parity);
 SetCtrlVal(com_Handle, COM_SP_DB_2, SP2_databits);
 SetCtrlVal(com_Handle, COM_SP_SB_2, SP2_stopbits);
 SetCtrlVal(com_Handle, COM_SP_INPUTQ_2, SP2_inputq);
 SetCtrlVal(com_Handle, COM_SP_OUTPUTQ_2, SP2_outputq);

 SetCtrlVal(com_Handle, COM_SP_COM_3, SP3_comport);
 SetCtrlVal(com_Handle, COM_SP_BR_3, SP3_baudrate);
 SetCtrlVal(com_Handle, COM_SP_P_3, SP3_parity);
 SetCtrlVal(com_Handle, COM_SP_DB_3, SP3_databits);
 SetCtrlVal(com_Handle, COM_SP_SB_3, SP3_stopbits);
 SetCtrlVal(com_Handle, COM_SP_INPUTQ_3, SP3_inputq);
 SetCtrlVal(com_Handle, COM_SP_OUTPUTQ_3, SP3_outputq);

 // TEST PARAMETERS
 SetCtrlVal(panelHandle, PANEL_P_MIN_SP, P_Min_SP);
 SetCtrlVal(panelHandle, PANEL_P_MAX_SP, P_Max_SP);
 SetCtrlVal(panelHandle, PANEL_P_SP_INCREMENTS, P_SP_Increments);

 SetCtrlVal(panelHandle, PANEL_P_MAX_T, P_Max_T);
 SetCtrlVal(panelHandle, PANEL_P_MIN_T, P_Min_T);
 SetCtrlVal(panelHandle, PANEL_P_T_INCREMENTS, P_T_Increments);

167

 SetCtrlVal(panelHandle, PANEL_DP_STIM_DURATION, DP_Stim_Duration);
 SetCtrlVal(panelHandle, PANEL_MTS_SPAN, MTS_Span);

 SetCtrlVal(panelHandle, PANEL_P_F_INCREMENTS, P_F_Increments);
 SetCtrlVal(panelHandle, PANEL_P_MAX_F, P_Max_F);
 SetCtrlVal(panelHandle, PANEL_P_MIN_F, P_Min_F);
 SetCtrlVal(panelHandle, PANEL_DWELL_TIME, StimDwellTime);

 SetCtrlVal(panelHandle, PANEL_Amp_On_1, Amp_On_1);
 SetCtrlVal(panelHandle, PANEL_Amp_On_2, Amp_On_2);
 SetCtrlVal(panelHandle, PANEL_Amp_On_3, Amp_On_3);
 SetCtrlVal(panelHandle, PANEL_Amp_On_4, Amp_On_4);
 SetCtrlVal(panelHandle, PANEL_Amp_On_5, Amp_On_5);

 SetCtrlVal(panelHandle, PANEL_P_DP_AMP_1, DP_Amp_Array_Save[0]);
 SetCtrlVal(panelHandle, PANEL_P_DP_AMP_2, DP_Amp_Array_Save[1]);
 SetCtrlVal(panelHandle, PANEL_P_DP_AMP_3, DP_Amp_Array_Save[2]);
 SetCtrlVal(panelHandle, PANEL_P_DP_AMP_4, DP_Amp_Array_Save[3]);
 SetCtrlVal(panelHandle, PANEL_P_DP_AMP_5, DP_Amp_Array_Save[4]);

 SetCtrlVal(panelHandle, PANEL_FUNC_GEN_VOLT_1, FuncGenVolt_Array_Save[0]);
 SetCtrlVal(panelHandle, PANEL_FUNC_GEN_VOLT_2, FuncGenVolt_Array_Save[1]);
 SetCtrlVal(panelHandle, PANEL_FUNC_GEN_VOLT_3, FuncGenVolt_Array_Save[2]);
 SetCtrlVal(panelHandle, PANEL_FUNC_GEN_VOLT_4, FuncGenVolt_Array_Save[3]);
 SetCtrlVal(panelHandle, PANEL_FUNC_GEN_VOLT_5, FuncGenVolt_Array_Save[4]);

 return;
 }
 //**
 // DSN_Init2 : Init some variable and do some setup
 //**
 void DSN_Init2()
 { // Set the colours up

 return;
 }

 //**
 //**
 //**

168

169

Appendix H MATLAB Post Processing Software Source Code

%% MATLAB Plotting Script
% Written by: Marc Evans
% Last Updated: March 14, 2010
%
% This script generates a series of plots from a data file created by the
% Monitoring and Control Program that runs the COSI Acoustic Stimulation
% Chamber. The user is prompted to select the data file he/she wishes to
% plot and then the script generates all the relevant figures.

%%%
%------------------------------ START ------------------------------------%
%%%

%% Prompt the user for a log file and calibration file and imports all data
%------------------%
% Import Data File
%------------------%
% Opens a file selection box for *.log files
[fileToRead1,pathname] = uigetfile(...
 {'*.log', 'Data Files (*.log)'; ...
 '*.*', 'All Files (*.*)'}, ...
 'Select Log File', ...
 'MultiSelect', 'off');

% If file selection is cancelled, pathname should be zero
% and nothing should happen
if pathname == 0
 return
end

% Import the file
newData1 = importdata(fileToRead1);

% Break the data up into a new structure with one field per column.
colheaders = genvarname(newData1.colheaders);
for i = 1:length(colheaders)
 dataByColumn1.(colheaders{i}) = newData1.data(:, i);
end

% Create new variables in the base workspace from those fields.
vars = fieldnames(dataByColumn1);
for i = 1:length(vars)
 assignin('base', vars{i}, dataByColumn1.(vars{i}));
end

% Prompt user to enter the name of the fluid
Fluid_Name = ...
 input(' Name of Fluid: \n Format (including brackets and dash): (Name - xx% mass) \n',
's');
if isempty(Fluid_Name)
 Fluid_Name = '**No fluid given**';
end

%-------------------------%
% Import Calibration File
%-------------------------%
% Opens a file selection box for *.txt files
[fileToRead1,pathname] = uigetfile(...
 {'*.txt', 'Data Files (*.txt)'; ...
 '*.*', 'All Files (*.*)'}, ...
 'Select Calibration File', ...

170

 'MultiSelect', 'off');

% If file selection is cancelled, pathname should be zero
% and nothing should happen
if pathname == 0
 return
end

% Import the file
newData1 = importdata(fileToRead1);

% Break the data up into a new structure with one field per column.
colheaders = genvarname(newData1.colheaders);
for i = 1:length(colheaders)
 dataByColumn1.(colheaders{i}) = newData1.data(:, i);
end

% Create new variables in the base workspace from those fields.
vars = fieldnames(dataByColumn1);
for i = 1:length(vars)
 assignin('base', vars{i}, dataByColumn1.(vars{i}));
end

%%%

%% Prepare Variables
%--------------------------%
% Setup General Variables
%--------------------------%
% Scale Select Variables
Time_Hours = TIME./3600;
Exp_Stage = Logging_Trigger.*2;

% Apply Calibration Factors
S1A = S1A*mS1A + bS1A;
S2A = S2A*mS2A + bS2A;
S3A = S3A*mS3A + bS3A;
S4A = S4A*mS4A + bS4A;
S5A = S5A*mS5A + bS5A;
S6A = S6A*mS6A + bS6A;
%S7A = S7A*mS7A + bS7A; % Bath Probe RTD
S8A = S8A*mS8A + bS8A;
S9A = S9A*mS9A + bS9A;
S1B = S1B*mS1B + bS1B;
S2B = S2B*mS2B + bS2B;
%S3B = S3B*mS3B + bS3B; % Pressure Relief Valve
S4B = S4B*mS4B + bS4B;
S5B = S5B*mS5B + bS5B;
S6B = S6B*mS6B + bS6B;
S7B = S7B*mS7B + bS7B;
S8B = S8B*mS8B + bS8B;
S9B = S9B*mS9B + bS9B;

% Determine Experiment Start
Start_Index = find(Logging_Trigger==1);
Start_Index = Start_Index(1);

% Determine Viscosity at Experiment Start
Baseline_Visc = Ave_L_Visc(Start_Index);

% Determine Temperature Limits
Low_Temp_Limit = Bath_Setpoint(Start_Index)-1;

171

High_Temp_Limit = Bath_Setpoint(Start_Index)+1;

%------------------------%
% Density Correction
%------------------------%
Fluid_Density = ...
 input(' Please Input Fluid_Density [g/mL]: \n');
if isempty(Fluid_Density)
 Fluid_Density = 1;
end
Ave_L_Visc = Ave_L_Visc./Fluid_Density;

% %--%
% % Correct Temperature/Pressure Instability
% %--%
% % Store Uncorrected Viscosities
% ui = Ave_L_Visc;
%
% % Interpolate Expected Viscosity at Exact Setpoint Conditions
% Ts = Bath_Setpoint(1);
% Ps = 500;
% us = interp2(pressures,temperatures,Static_PT_Viscosities,Ps,Ts);
% us = us.*ones(length(ui),1);
%
% % Interpolate Expected Viscosity at Current Conditions
% Ti = S7A;
% Pi = S2B;
% ut = zeros(length(ui),1);
%
% % Repeat this loop once for each reading
% % Variables to keep track of progress
% counter = 0;
% processed_values = 0;
% display('Interpolating Viscosity Correction Factors')
% percent_done = 0
% total_values = length(ui);
% for i=1:length(ui)
% ut(i) = interp2(pressures,temperatures,Static_PT_Viscosities,Pi(i),Ti(i));
% counter=counter+1;
% if counter>=1000
% eval(['clc'])
% processed_values=processed_values+counter;
% display('Interpolating Viscosity Correction Factors')
% percent_done = 100*(processed_values/total_values)
% counter=0;
% end
% end
%
% % Apply Correction Factor to each reading
% PT_Corr_Viscosities = ui+(us-ut);

%%%

%% Parse Data
%-----------------------------%
% Identify Dynamic Amplitudes
%-----------------------------%
% Store first dynamic pressure amplitude
Num_Dyn_Amps = 1;
Dyn_Amp_Array(1) = Dyn_Press_Amp(1);

% Count # of Distinct Dynamic Pressure Amplitude Steps in "Dyn_Press_Amp"

172

for i = 1:length(Dyn_Press_Amp)
 if Dyn_Press_Amp(i) ~= Dyn_Amp_Array(Num_Dyn_Amps)

 % Store # in "Num_Dyn_Amps"
 Num_Dyn_Amps = Num_Dyn_Amps+1;

 % Store Amplitudes in "Dyn_Amp_Array"
 Dyn_Amp_Array(Num_Dyn_Amps) = Dyn_Press_Amp(i);
 end
end

%---------------------------------%
% Parse Data by Dynamic Amplitude
%---------------------------------%
% Each column of a 'Parsed_XXX' variable holds data for one dynamic
% pressure amplitude series

% Variables to keep track of progress
counter = 0;
processed_values = 0;
percent_done = 0
total_values = length(vars)*length(TIME);

% Repeat this loop once for each dynamic amplitude series
for i=1:Num_Dyn_Amps
 % Find indices for one dynamic amplitude series
 Start_Indices = find(Dyn_Press_Amp==Dyn_Amp_Array(i));
 % Using index, assign values to parsed variable column 'i'
 for j=1:length(vars)
 % Repeat once for each index location
 for k=1:length(Start_Indices)
 eval(['Parsed_' vars{j} '(k,i)= dataByColumn1.(vars{j})(Start_Indices(k));']);

 counter=counter+1;
 if counter>=1000
 eval(['clc'])
 processed_values=processed_values+counter;
 display('Parsing Dynamic Amplitude Series')
 percent_done = 100*(processed_values/total_values)
 counter=0;
 end
 end
 end
end

%%%

%% Count Frequency Series and Parse Time
%-----------------------------%
% Count Frequency Series
%-----------------------------%
% Store first frequency
Num_Freq = 1;
Freq_Array(1) = Parsed_FuncGen_Freq(10,2);

% Count # of Distinct Frequency Steps in "Parsed_FuncGen_Freq"
for i = 1:length(Parsed_FuncGen_Freq)
 if Parsed_FuncGen_Freq(i,2) ~= Freq_Array(Num_Freq)
 if Parsed_FuncGen_Freq(i,2)~= 0
 % Store # in "Num_Freq"
 Num_Freq = Num_Freq+1;

173

 % Store Frequency in "Freq_Array"
 Freq_Array(Num_Freq) = Parsed_FuncGen_Freq(i,2);
 end
 end
end

% Zero each column of the Parsed_TIME matrix
Column_Subtraction = Parsed_TIME(1,:);
for i=1:size(Parsed_TIME,2)
 % Subtract the first time value in each column from the rows
 for j=1:length(Parsed_TIME)
 Parsed_TIME(j,i) = Parsed_TIME(j,i)-Column_Subtraction(i);
 % Zero any resulting negative numbers
 if Parsed_TIME(j,i) <0
 Parsed_TIME(j,i)=0;
 end
 end
end

%%%

%% Parse Frequency Series and Analyze Data
%----------------------------%
% Identify Frequency Series
%----------------------------%
% Repeat this loop once for each dynamic amplitude series
% (Once per column of Parsed_Ave_L_Visc)
Critical_Data=0;
for a=1:Num_Dyn_Amps
 % Find indices where stimulation is on (logging trigger = 1)
 Current_Column = Parsed_Logging_Trigger(:,a);
 Stimulation_On = find(Current_Column==1);

 % Check each index for new frequency series
 % Store viscosity in appropriate amplitude/frequency array location
 v=0;
 f=1;
 for z=1:length(Stimulation_On)-1
 if (Stimulation_On(z+1)-Stimulation_On(z)==1) % Same freq series
 i = i+1;
 Critical_Data(a,f,i) = Parsed_Ave_L_Visc(Stimulation_On(z),a);

 else % Reached next freq series
 f = f+1;
 i = 1;
 Critical_Data(a,f,i) = Parsed_Ave_L_Visc(Stimulation_On(z),a);
 end
 end
end

%---------------------------------%
% Calculate Viscosity Statistics
%---------------------------------%
% Repeat this loop once for each amplitude series
for a=1:size(Critical_Data,1)
 % Repeat this loop once for each frequency series
 for f=1:size(Critical_Data,2)
 % Find non-zero entries
 viscosities = zeros(1);
 h=1;
 for v=1:size(Critical_Data,3)
 if Critical_Data(a,f,v)~=0

174

 viscosities(h) = Critical_Data(a,f,v);
 h=h+1;
 end
 end

 % Only interested in the latter half of the stimulation data
 key_viscosities=zeros(1);
 j=1;
 for i=ceil(length(viscosities)/2):length(viscosities)
 key_viscosities(j)=viscosities(i);
 j=j+1;
 end

 % Calculate statistics
 Viscosity_Stats(a,f,1) = mean(key_viscosities);
 Viscosity_Stats(a,f,2) = max(key_viscosities);
 Viscosity_Stats(a,f,3) = min(key_viscosities);
 Viscosity_Stats(a,f,4) = std(key_viscosities);

 end
end

%---%
% Collect Viscosity Values in Interpolation Array
%---%
Acoustic_AF_Viscosities = Viscosity_Stats(:,:,1);

%%%

%% Calculate Parameters: Plotting Parameters
%---------------------------------%
% Calculate Plotting Parameters
%---------------------------------%
% Interpolate Viscosity Limits
temperatures = (20:20:80);
pressures = (0:200:1000);

Mid = interp2(pressures,temperatures,...
 Static_PT_Viscosities,500,Bath_Setpoint(1));

Upper = interp2(pressures,temperatures,...
 Static_PT_Viscosities,500,Bath_Setpoint(1)-0.25);
Upper_Baseline_Visc = Baseline_Visc+(Upper-Mid);

Lower = interp2(pressures,temperatures,...
 Static_PT_Viscosities,500,Bath_Setpoint(1)+0.25);
Lower_Baseline_Visc = Baseline_Visc-(Mid-Lower);

% Deal with extrapolation limit
if(isnan(Upper_Baseline_Visc) == 1)
 Upper_Baseline_Visc = Baseline_Visc+(Mid-Lower);
end
if(isnan(Lower_Baseline_Visc) == 1)
 Lower_Baseline_Visc = Baseline_Visc-(Upper-Mid);
end

% Calculate Max Viscosity for Axis Scaling
Max_Viscosity = max(max(Viscosity_Stats(:,:,1)));
if (Baseline_Visc > Max_Viscosity)
 Max_Viscosity = Baseline_Visc;
end

175

% Compute Viscosity Axis Ticks
viscosity_ticks = zeros(1);
tick_increment = 50;
current_tick = 0;
i = 1;
while current_tick < Max_Viscosity+tick_increment,
 viscosity_ticks(i) = current_tick;
 current_tick = current_tick+tick_increment;
 i = i+1;
end

%%%

%% Generate Figure: Viscosity vs Frequency for Different Dynamic Pressures
%----------------------%
% Plot Figure
%----------------------%
% Create figure
figure1 = figure;
set(figure1,'Position',[80,80,1000,800]);

axes1 = axes('Parent',figure1,...
 'XLim',[min(Freq_Array) max(Freq_Array)],...
 'XTickMode','manual',...
 'XTick',[Freq_Array],...
 'YGrid','on',...
 'YLim',[min(viscosity_ticks) max(viscosity_ticks)],...
 'YTickMode','manual',...
 'YTick',[viscosity_ticks]);

box('on');
hold('on');

if(Dyn_Amp_Array(1)~=0)
h1 = errorbar(Freq_Array, Viscosity_Stats(1,:,1),Viscosity_Stats(1,:,4));
end
if (Num_Dyn_Amps>1)
 h2 = errorbar(Freq_Array, Viscosity_Stats(2,:,1),Viscosity_Stats(1,:,4));
end
if (Num_Dyn_Amps>2)
 h3 = errorbar(Freq_Array, Viscosity_Stats(3,:,1),Viscosity_Stats(1,:,4));
end
if (Num_Dyn_Amps>3)
 h4 = errorbar(Freq_Array, Viscosity_Stats(4,:,1),Viscosity_Stats(1,:,4));
end
if (Num_Dyn_Amps>4)
 h5 = errorbar(Freq_Array, Viscosity_Stats(5,:,1),Viscosity_Stats(1,:,4));
end

% Plot Baseline Viscosity
Base = line([0 ; Freq_Array(length(Freq_Array))],...
 [Baseline_Visc ; Baseline_Visc],'Color', 'k','LineWidth',2);
Upper_Lim = line([0 ; length(TIME)],[Lower_Baseline_Visc ; Lower_Baseline_Visc],...
 'LineStyle','--','Color', 'k','LineWidth',2);
Lower_Lim = line([0 ; length(TIME)],[Upper_Baseline_Visc ; Upper_Baseline_Visc],...
 'LineStyle','--','Color', 'k','LineWidth',2);

%----------------------%
% Customize Appearance
%----------------------%
% Title
title({'Viscosity vs Acoustic Stimulation Frequency and Amplitude',...

176

 Fluid_Name},...
 'FontWeight','bold');

% Axes
xlabel('Frequency [Hz]')
ylabel('Viscosity [cP]')

% Series
markersize = 7;

if(Dyn_Amp_Array(1)~=0)

 set(h1,'Marker','o','MarkerSize',markersize,...
 'Color', 'b', 'MarkerFaceColor','b',...
 'LineStyle','--') % freq_1
end
if (Num_Dyn_Amps>1)
 set(h2,'Marker','x','MarkerSize',markersize,...
 'Color', 'r', 'MarkerFaceColor','r',...
 'LineStyle','--') % freq_2
end
if (Num_Dyn_Amps>2)
 set(h3,'Marker','s','MarkerSize',markersize,...
 'Color', 'g', 'MarkerFaceColor','g',...
 'LineStyle','--') % freq_3
end
if (Num_Dyn_Amps>3)
 set(h4,'Marker','d','MarkerSize',markersize,...
 'Color', 'm', 'MarkerFaceColor','m',...
 'LineStyle','--') % freq_4
end
if (Num_Dyn_Amps>4)
 set(h5,'Marker','+','MarkerSize',markersize,...
 'Color', 'c', 'MarkerFaceColor','c',...
 'LineStyle','--') % freq_4
end

% Legend
% temp_legend = num2str(Dyn_Amp_Array');
% temp_legend(:,4) = ' ';
% temp_legend(:,5) = 'p';
% temp_legend(:,6) = 's';
% temp_legend(:,7) = 'i';
% temp_legend(size(temp_legend)+1,

legend('100psi','200psi','400psi','0psi at Setpoint T',...
 '0psi at Setpoint ± 0.25°C',...
 'Location','SouthEast');

%%%

%% Generate Figure: Viscosity, Temperature, Experiment Stage vs Time
%----------------------%
% Plot Figure
%----------------------%
% Create figure
figure1 = figure;
set(figure1,'Position',[0,0,1000,800]);

% Create axes
axes1 = axes('Parent',figure1,...
 'YColor',[0 0 1],...

177

 'Position',[0.13 0.11 0.775 0.815]);

box('on');
hold('all');

% Plot multiple lines using plotyy
[AX,H1,H2] = plotyy(Time_Hours,[Ave_L_Visc],...
 Time_Hours,[S7A,Exp_Stage],...
 'Parent',axes1);

% Plot constants
axes(AX(1));
H3 = line([0 ; length(TIME)],[Baseline_Visc ; Baseline_Visc],...
 'LineStyle','--');
axes(AX(2));
H4 = line([0 ; length(TIME)],[Low_Temp_Limit ; Low_Temp_Limit],...
 'LineStyle','--');
H5 = line([0 ; length(TIME)],[High_Temp_Limit ; High_Temp_Limit],...
 'LineStyle','--');

%----------------------%
% Customize Appearance
%----------------------%
% Title
title({'Viscosity and Temperature vs Time',...
 '(Also Showing Experiment Progression)'},...
 'FontWeight','bold');

% Axes
xlabel('Time [hrs]')
set(get(AX(1), 'Ylabel'),'String','Viscosity [cP]')
set(AX(1),'ycolor','b',...
 'YTick', [0:100:1000])

set(get(AX(2), 'Ylabel'),'String','Temperature [°C]')
ylim('manual');
ylim([0 100]);
set(AX(2),'ycolor',[0 0.498 0],...
 'YTick', [0:10:100])

% Series
set(H1(1),'Color','b','Marker','.','MarkerSize',1) %Viscosity
set(H2(1),'Color',[0 0.498 0],... % Temperature
 'LineStyle','-',...
 'Marker','.',...
 'MarkerSize',1)
set(H2(2),'Color','r',... % Experiment Stage
 'Marker','.',...
 'MarkerSize',1)

% Legend
legend([H1;H3;H2(1);H4;H2(2)],'Viscosity','Initial Viscosity',...
 'Center Temperature','±1°C from Setpoint','Experiment Stage',...
 'Location','SouthEast');

%%%

%% Generate Figure: Viscosity vs Time for Different Dynamic Pressures
%----------------------%
% Plot Figure
%----------------------%
% Create figure

178

figure1 = figure;
set(figure1,'Position',[0,0,1000,800]);

% Create axes
axes1 = axes('Parent',figure1,...
 'YColor','k',...
 'Position',[0.13 0.11 0.775 0.815]);

box('on');
hold('all');

AX = plot(Parsed_TIME, Parsed_Ave_L_Visc,'LineStyle','-','Marker','.',...
 'MarkerSize',1);

% Plot constants
Max_Time = max(max(Parsed_TIME));
H = line([0 ; Max_Time],[Baseline_Visc ; Baseline_Visc],...
 'LineStyle','--',...
 'Color','k');

%----------------------%
% Customize Appearance
%----------------------%
% Title
title({'Viscosity vs Time for Different Dynamic Pressure Amplitudes'},...
 'FontWeight','bold');

% Axes
xlabel('Time [sec]');
ylabel('Viscosity [cP]');

% Legend
HL = legend(num2str(transpose(Dyn_Amp_Array)),'Location','SouthEast');
v = get(HL,'title');
set(v,'string','Amplitude [psi]');

%%%

%% Generate Video: Radial Temperatures vs Time
%----------------------%
% Initialize variables
%----------------------%
radial_temps=[S8B(1) S8A(1) S7B(1) S7A(1)];
radial_positions=[S8B_Pos(1) S8A_Pos(1) S7B_Pos(1) S7A_Pos(1)];

%----------------------%
% Plot Figure
%----------------------%
% Create figure
figure1 = figure;
set(figure1,'Position',[50,50,640,480]);

% Create axes
axes1 = axes('Parent',figure1,...
 'YColor','k',...
 'Position',[0.13 0.11 0.775 0.815]);
axis([0 37.5 0 30])

box('on');
hold('all');

AX=plot(radial_positions, radial_temps,'o',...

179

 'MarkerSize',7,...
 'MarkerEdgeColor','b',...
 'MarkerFaceColor','r',...
 'LineStyle','-');
H4 = line([0 ; 37.5],[Low_Temp_Limit ; Low_Temp_Limit],...
 'LineStyle','--');
H5 = line([0 ; 37.5],[High_Temp_Limit ; High_Temp_Limit],...
 'LineStyle','--');

hold on

%----------------------%
% Customize Appearance
%----------------------%
% Title
title({'Radial Temperatures vs Time'},...
 'FontWeight','bold');

% Axes
xlabel('Radial Distance from Centre [mm]')
ylabel('Temperature [°C]')

% Legend
legend('Radial Temperature','±1°C from Setpoint');

%-------------------%
% Generate Movie
%-------------------%

% Define Movie
aviobj = avifile('RadialTemperatureMovie.avi')

counter=0
for i=1:length(TIME)-1
 Movie_Array = getframe(figure1);
 aviobj = addframe(aviobj,Movie_Array);
 radial_temps=[S8B(i+1) S8A(i+1) S7B(i+1) S7A(i+1)];
 set(AX,'XData',radial_positions,'YData',radial_temps);
 drawnow;

 counter=counter+1;
 if counter>=1000
 counter=0;
 check=i
 end
end

close(figure1)
aviobj = close(aviobj);

%%%
%------------------------------- END -------------------------------------%
%%%

180

	Evans Thesis - Final Main Body
	Appendix - Engineering Drawings
	MTS Installation
	Sheet1
	Drawing View1

	Test Chamber (Assembled)
	Sheet1
	Drawing View21

	Test Chamber (Exploded)
	Sheet2
	Drawing View19

	Cylinder Assembly (Manufacturing)
	Test Chamber Body (Manufacturing)
	Sheet1
	Drawing View1
	Drawing View3

	Sheet2
	Drawing View4
	Section View A-A
	Detail View A (2 : 3)
	Detail View B (5 : 2)

	Sheet3
	Drawing View11
	Section View C-C
	Detail View D (1 : 1)

	Test Chamber Water Jacket
	Sheet1
	Drawing View2
	Drawing View3
	Section View A-A
	Drawing View8

	Test Chamber Trunnion
	Sheet1
	Drawing View1
	Drawing View2
	Drawing View3

	Viscometer Flange
	Sheet1
	Drawing View2
	Section View A-A

	Piston Flange
	Sheet1
	Drawing View1
	Section View A-A

	Piston Flange Retrofit
	Sheet1
	Drawing View9
	Section View A-A

	Piston Flange Insert
	Sheet1
	Drawing View9
	Drawing View10
	Section View A-A
	Detail View B (6 : 1)
	Detail View C (4 : 1)

	Hydraulic Piston
	Sheet1
	Drawing View9
	Drawing View11

	Hydraulic Piston Coupling
	Sheet1
	Drawing View9
	Section View A-A
	Drawing View14

	Chamber Anchor
	Sheet1
	Drawing View8
	Section View A-A

	Tensile Testing Machine Mounting Plate
	Sheet1
	Drawing View1
	Drawing View2

	Frame Assembly (Manufacturing)
	Frame Body
	Sheet1
	Drawing View3
	Drawing View4
	Drawing View5
	Detail View A (1 : 1.5)
	Drawing View8

	Frame Table
	Trunnion Base
	Sheet1
	Drawing View1
	Drawing View4

	Trunnion End Plate
	Sheet1
	Drawing View2
	Drawing View3

	Trunnion Top Cap
	Sheet1
	Drawing View5
	Drawing View6

	Appendix - Monitoring and Control Program (9pt)
	Appendix - Acoustic Data Post Processing Code (8pt)

